Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Morphol Kinesiol ; 6(1)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546291

ABSTRACT

A flexible ankle joint is suggested to be a contributing factor for vertical squat jump (SQJ) performance. The purpose of the study was to investigate the effect of the active (ACT) and passive (PAS) ankle joint range of motion (ROM) on SQJ performed by adolescent female volleyball players. ACT and PAS ankle ROM at knee extension angles of 90, 140, and 180 degrees (180 degrees: full extension) were measured with a video analysis method for 35 female post-pubertal volleyball players (16.3 ± 1.1 yrs, 1.80 ± 0.04 m, 68.8 ± 6.8 kg). Additionally, the players fulfilling previously recommended criteria were assigned to the flexible (n = 10) and inflexible (n = 8) groups and executed SQJ with and without an arm swing on a force-plate. Results of the 2 × 2 × 3 MANOVA revealed a significant (p < 0.05) flexibility type and knee angle effect, as ankle ROM was larger in PAS compared to ACT and as the knee joint progressed from 90 to 180 degrees extension. The 2 × 2 ANOVA revealed a significant (p < 0.05) group effect, as flexible players jumped higher in the arm swing SQJ, along with a significant arm swing effect on key SQJ kinetic parameters. In conclusion, a more flexible ankle joint result in improved SQJ performance. Therefore, ankle flexibility training should be implemented in youth volleyball players.

2.
J Sports Sci ; 31(16): 1789-96, 2013.
Article in English | MEDLINE | ID: mdl-23879544

ABSTRACT

The aim of the present study was to investigate the kinematic and kinetic differences in the execution of vertical jumps between individuals with good and poor ankle dorsiflexion. Fifteen physical education students were assigned to the flexible group (FG), while another 15 were assigned to the inflexible group (IFG). The two groups executed countermovement jumps (CMJ) and drop jumps from a 60 cm height (DJ60). For the CMJ, the FG jumped higher (32.0 ± 4.0 cm vs. 30.2 ± 4.9 cm, P = 0.27) and used a greater range of motion in all leg joints. The IFG jumpers raised their heels off the ground and had a greater horizontal distance between the centre of mass of the trunk and the centre of the hip joint (LCMh 25.6 ± 3.4 cm vs. 30.9 ± 4.3 cm, P < 0.001). In the DJ60 the FG jumped higher (22.4 ± 5.9 cm vs. 19.5 ± 4.6 cm, P = 0.14) with a greater vertical shift of the body centre of mass (BCM) (S = 0.45 ± 0.11 cm vs. 0.36 ± 0.05 cm, P < 0.01) and better joint coordination. The IFG jumpers changed the position of their trunk and heels depending on the jump type. Trainers should reconsider the technical issues of vertical jumps according to the flexibility of the ankle joint.


Subject(s)
Ankle Joint , Ankle , Leg , Movement , Range of Motion, Articular , Task Performance and Analysis , Adult , Biomechanical Phenomena , Humans , Joints , Male , Torso , Young Adult
3.
J Strength Cond Res ; 24(8): 2102-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20613645

ABSTRACT

The purpose of this study was to investigate the effect of a 10-week heavy resistance combined with a running training program on the strength, running speed (RS), and vertical jump performance of young basketball players. Twenty-six junior basketball players were equally divided in 2 groups. The control (CON) group performed only technical preparation and the group that followed the combined training program (CTP) performed additionally 5 sets of 8-5 repetition maximum (RM) half squat with 1 30-m sprint after each set. The evaluation took place before training and after the 5th and 10th weeks of training. Apart from the 1RM half squat test, the 10- and 30-m running time was measured using photocells and the jump height (squat, countermovement jump, and drop jump) was estimated taking into account the flight time. The 1RM increased by 30.3 +/- 1.5% at the 10th week of training for the CTP group (p < 0.05), whereas the CON group showed no significant increase (1.1 +/- 1.6%, p > 0.05). In general, all measured parameters showed a statistically significant increase after the 5th and 10th weeks (p < 0.05), in contrast to the CON group (p > 0.05). This suggests that the applied CTP is beneficial for the strength, RS, and jump height of young basketball players. The observed adaptations in the CTP group could be attributed to learning factors and to a more optimal transfer of the strength gain to running and jumping performance.


Subject(s)
Athletic Performance/physiology , Basketball/physiology , Resistance Training , Running/physiology , Adolescent , Humans , Male , Muscle Strength/physiology , Physical Endurance/physiology , Resistance Training/methods
4.
J Strength Cond Res ; 23(9): 2568-73, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19910817

ABSTRACT

The purpose of the present study was to examine the effect of chronological age and gender on speed development during different sprinting phases in children and adolescents of both genders. The sample consisted of 360 sedentary pupils aged between 7 and 18 years, with 15 pupils representing each subgroup. The 30-m sprint speed was measured with photocells every 10 m. According to the results, boys and girls showed a gradual improvement in running speed during each sprint phase. The 18-year-old boys had significantly higher sprint speed in all measured distances compared to the 15-year-old or younger boys (p < 0.05), whereas the 18-year-old girls had significantly higher speed at the distances of 0 to 10, 10 to 20, 20 to 30, and 0 to 30 m compared to the 13- and 12-year-old or younger girls (p < 0.05). Significant differences between genders in the 15-years-old or older participants were observed. It is concluded that, from 7 to 18 years of age, gender and chronological age are factors that affect running speed during the 30-m sprint. Furthermore, the performance on each sprint phase is uniformly affected by the chronological age. Boys run faster than girls in all running phases, and the span between genders increases after the age of 15 years. It is useful that coaches take these findings into consideration when evaluating children in sprint performance.


Subject(s)
Adolescent Development/physiology , Child Development/physiology , Psychomotor Performance/physiology , Puberty/physiology , Running/physiology , Adolescent , Age Factors , Analysis of Variance , Body Composition , Body Height , Body Weight , Child , Female , Growth/physiology , Humans , Male , Muscle Strength/physiology , Sedentary Behavior , Sex Characteristics , Time Factors
5.
J Strength Cond Res ; 18(3): 546-50, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15320661

ABSTRACT

Drop jumping performance (DJP) is of high importance in order to achieve sporting performance in both team and individual sports. The purpose of the present study was to compare DJP among athletes from various sports. One hundred thirty-eight male athletes (age: 22.3 +/- 3.6 years, body height: 1.87 +/- 0.08 m, body mass: 81.8 +/- 10.8 kg) from 6 different sports performed drop jumps from 60 cm (DJ60) on a force plate. Results revealed that volleyball players jumped higher (p < 0.001) than other athletes. However, track and field athletes produced higher peak force and higher power output using a shorter upward phase (p < 0.001). Further examination using principal components analysis (PCA) revealed that team sport athletes and single scull rowers exhibited DJP utilizing force and time parameters differently than track and field athletes. Conclusively, DJP was different among athletes of various sports. Furthermore, PCA can be a useful method for evaluating the above mentioned differences and for monitoring drop jumping training programs.


Subject(s)
Exercise/physiology , Muscle, Skeletal/physiology , Sports/physiology , Adult , Biomechanical Phenomena , Body Size , Humans , Male , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...