Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 298, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491034

ABSTRACT

Time series of annual maxima daily precipitation are crucial for understanding extreme precipitation behavior and its shifts toward nonstationarity with global warming. Extreme precipitation insight assists hydraulic infrastructure design, water resource management, natural hazard prevention, and climate change adaptation. However, not even a third of the records are of sufficient length, and the number of active stations keeps decreasing. Herein, we present HYADES: archive of yearly maxima of daily precipitation records, a global dataset derived from the Global Historical Climatology Network database of daily records (GHCN-Daily). The HYADES dataset contains records from 39 206 stations (heterogeneously distributed worldwide) with record lengths varying from 16 to 200 years between 1805 and 2023. HYADES was extracted through a methodology designed to accurately capture the true maxima even in the presence of missing values within the records. The method's thresholds were determined and evaluated through Monte Carlo simulations. Our approach demonstrates a 96.73% success rate in detecting the true maxima while preserving time series statistical properties of interest (L-moments and temporal monotonic trend).

2.
Earths Future ; 9(10): e2021EF002150, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34820470

ABSTRACT

As droughts have widespread social and ecological impacts, it is critical to develop long-term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 models, to reproduce drought duration and severity in three observational data sets using the Standardized Precipitation Index (SPI). We used summary statistics beyond the mean and standard deviation, and devised a novel probabilistic framework, based on the Hellinger distance, to quantify the difference between observed and simulated drought characteristics. Results show that many simulations have less than ± 10 % error in reproducing the observed drought summary statistics. The hypothesis that simulations and observations are described by the same distribution cannot be rejected for more than 80 % of the grids based on our H distance framework. No single model stood out as demonstrating consistently better performance over large regions of the globe. The variance in drought statistics among the simulations is higher in the tropics compared to other latitudinal zones. Though the models capture the characteristics of dry spells well, there is considerable bias in low precipitation values. Good model performance in terms of SPI does not imply good performance in simulating low precipitation. Our study emphasizes the need to probabilistically evaluate climate model simulations in order to both pinpoint model weaknesses and identify a subset of best-performing models that are useful for impact assessments.

3.
Sci Total Environ ; 767: 144612, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33454612

ABSTRACT

Hydroclimatic time series analysis focuses on a few feature types (e.g., autocorrelations, trends, extremes), which describe a small portion of the entire information content of the observations. Aiming to exploit a larger part of the available information and, thus, to deliver more reliable results (e.g., in hydroclimatic time series clustering contexts), here we approach hydroclimatic time series analysis differently, i.e., by performing massive feature extraction. In this respect, we develop a big data framework for hydroclimatic variable behaviour characterization. This framework relies on approximately 60 diverse features and is completely automatic (in the sense that it does not depend on the hydroclimatic process at hand). We apply the new framework to characterize mean monthly temperature, total monthly precipitation and mean monthly river flow. The applications are conducted at the global scale by exploiting 40-year-long time series originating from over 13 000 stations. We extract interpretable knowledge on seasonality, trends, autocorrelation, long-range dependence and entropy, and on feature types that are met less frequently. We further compare the examined hydroclimatic variable types in terms of this knowledge and, identify patterns related to the spatial variability of the features. For this latter purpose, we also propose and exploit a hydroclimatic time series clustering methodology. This new methodology is based on Breiman's random forests. The descriptive and exploratory insights gained by the global-scale applications prove the usefulness of the adopted feature compilation in hydroclimatic contexts. Moreover, the spatially coherent patterns characterizing the clusters delivered by the new methodology build confidence in its future exploitation. Given this spatial coherence and the scale-independent nature of the delivered feature values (which makes them particularly useful in forecasting and simulation contexts), we believe that this methodology could also be beneficial within regionalization frameworks, in which knowledge on hydrological similarity is exploited in technical and operative terms.

4.
Earths Future ; 6(1): 71-79, 2018 01.
Article in English | MEDLINE | ID: mdl-29541645

ABSTRACT

Trends in short-lived high-temperature extremes record a different dimension of change than the extensively studied annual and seasonal mean daily temperatures. They also have important socioeconomic, environmental, and human health implications. Here, we present analysis of the highest temperature of the year for approximately 9000 stations globally, focusing on quantifying spatially explicit exceedance probabilities during the recent 50- and 30-year periods. A global increase of 0.19°C per decade during the past 50 years (through 2015) accelerated to 0.25°C per decade during the last 30 years, a faster increase than in the mean annual temperature. Strong positive 30-year trends are detected in large regions of Eurasia and Australia with rates higher than 0.60°C per decade. In cities with more than 5 million inhabitants, where most heat-related fatalities occur, the average change is 0.33°C per decade, while some east Asia cities, Paris, Moscow, and Houston have experienced changes higher than 0.60°C per decade.

SELECTION OF CITATIONS
SEARCH DETAIL
...