Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998423

ABSTRACT

Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices. The optical Hall effect (OHE) emerges as a contactless method for exploring the transport and electronic properties of semiconductor materials, simultaneously offering insights into their dielectric function. This non-destructive technique employs spectroscopic ellipsometry at long wavelengths in the presence of a magnetic field and provides quantitative information on the charge carrier density, sign, mobility, and effective mass of individual layers in multilayer structures and bulk materials. In this paper, we explore the use of terahertz (THz) OHE to study the charge carrier properties in group-III nitride heterostructures and bulk material. Examples include graded AlGaN channel high-electron-mobility transistor (HEMT) structures for high-linearity devices, highlighting the different grading profiles and their impact on the two-dimensional electron gas (2DEG) properties. Next, we demonstrate the sensitivity of the THz OHE to distinguish the 2DEG anisotropic mobility parameters in N-polar GaN/AlGaN HEMTs and show that this anisotropy is induced by the step-like surface morphology. Finally, we present the temperature-dependent results on the charge carrier properties of 2DEG and bulk electrons in GaN with a focus on the effective mass parameter and review the effective mass parameters reported in the literature. These studies showcase the capabilities of the THz OHE for advancing the understanding and development of group-III materials and devices.

2.
Sci Rep ; 12(1): 17987, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289429

ABSTRACT

Structural defects in Mg-doped GaN were analyzed using high-resolution scanning transmission electron microscopy combined with electron energy loss spectroscopy. The defects, in the shape of inverted pyramids, appear at high concentrations of incorporated Mg, which also lead to a reduction in free-hole concentration in Mg doped GaN. Detailed analysis pinpoints the arrangement of atoms in and around the defects and verify the presence of a well-defined layer of Mg at all facets, including the inclined facets. Our observations have resulted in a model of the pyramid-shaped defect, including structural displacements and compositional replacements, which is verified by image simulations. Finally, the total concentration of Mg atoms bound to these defects were evaluated, enabling a correlation between inactive and defect-bound dopants.

SELECTION OF CITATIONS
SEARCH DETAIL
...