Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 28(8): 1676-86, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24504023

ABSTRACT

In addition to their cytoprotective role in stressful conditions, heat shock proteins (HSPs) are involved in specific differentiation pathways, for example, we have identified a role for HSP90 in macrophage differentiation of human peripheral blood monocytes that are exposed to macrophage colony-stimulating factor (M-CSF). Here, we show that deletion of the main transcription factor involved in heat shock gene regulation, heat shock factor 1 (HSF1), affects M-CSF-driven differentiation of mouse bone marrow cells. HSF1 transiently accumulates in the nucleus of human monocytes undergoing macrophage differentiation, including M-CSF-treated peripheral blood monocytes and phorbol ester-treated THP1 cells. We demonstrate that HSF1 has a dual effect on SPI1/PU.1, a transcription factor essential for macrophage differentiation and whose deregulation can lead to the development of leukemias and lymphomas. Firstly, HSF1 regulates SPI1/PU.1 gene expression through its binding to a heat shock element within the intron 2 of this gene. Furthermore, downregulation or inhibition of HSF1 impaired both SPI1/PU.1-targeted gene transcription and macrophage differentiation. Secondly, HSF1 induces the expression of HSP70 that interacts with SPI1/PU.1 to protect the transcription factor from proteasomal degradation. Taken together, HSF1 appears as a fine-tuning regulator of SPI1/PU.1 expression at the transcriptional and post-translational levels during macrophage differentiation of monocytes.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/physiology , Macrophages/cytology , Monocytes/cytology , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Transcription Factors/physiology , Animals , Antigens, CD/analysis , Antigens, Differentiation, Myelomonocytic/analysis , Cells, Cultured , Gene Expression Regulation , Heat Shock Transcription Factors , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proteasome Endopeptidase Complex/metabolism , Receptors, Cell Surface/analysis
2.
Nature ; 406(6791): 74-8, 2000 Jul 06.
Article in English | MEDLINE | ID: mdl-10894544

ABSTRACT

During neural induction, the 'organizer' of the vertebrate embryo instructs neighbouring ectodermal cells to become nervous system rather than epidermis. This process is generally thought to occur around the mid-gastrula stage of embryogenesis. Here we report the isolation of ERNI, an early response gene to signals from the organizer (Hensen's node). Using ERNI as a marker, we present evidence that neural induction begins before gastrulation--much earlier in development than previously thought. We show that the organizer and some of its precursor cells produce a fibroblast growth factor signal, which can initiate, and is required for, neural induction.


Subject(s)
Avian Proteins , Embryonic Induction , Fibroblast Growth Factors/physiology , Gastrula , Nerve Tissue Proteins/physiology , Nervous System/embryology , Amino Acid Sequence , Animals , COS Cells , Chick Embryo , Culture Techniques , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/metabolism , Fibroblast Growth Factor 8 , Fibroblast Growth Factors/biosynthesis , High Mobility Group Proteins/biosynthesis , High Mobility Group Proteins/metabolism , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Organizers, Embryonic , Quail , SOXB1 Transcription Factors , Signal Transduction , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...