Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Article in English | MEDLINE | ID: mdl-38697044

ABSTRACT

Objective.The aim of this work was to develop a Phase I control chart framework for the recently proposed multivariate risk-adjusted Hotelling'sT2chart. Although this control chart alone can identify most patients receiving extreme organ-at-risk (OAR) dose, it is restricted by underlying distributional assumptions, making it sensitive to extreme observations in the sample, as is typically found in radiotherapy plan quality data such as dose-volume histogram (DVH) points. This can lead to slightly poor-quality plans that should have been identified as out-of-control (OC) to be signaled in-control (IC).Approach. We develop a robust iterative control chart framework to identify all OC patients with abnormally high OAR dose and improve them via re-optimization to achieve an IC sample prior to establishing the Phase I control chart, which can be used to monitor future treatment plans.Main Results. Eighty head-and-neck patients were used in this study. After the first iteration, P14, P67, and P68 were detected as OC for high brainstem dose, warranting re-optimization aimed to reduce brainstem dose without worsening other planning criteria. The DVH and control chart were updated after re-optimization. On the second iteration, P14, P67, and P68 were IC, but P40 was identified as OC. After re-optimizing P40's plan and updating the DVH and control chart, P40 was IC, but P14* (P14's re-optimized plan) and P62 were flagged as OC. P14* could not be re-optimized without worsening target coverage, so only P62 was re-optimized. Ultimately, a fully IC sample was achieved. Multiple iterations were needed to identify and improve all OC patients, and to establish a more robust control limit to monitor future treatment plans.Significance. The iterative procedure resulted in a fully IC sample of patients. With this sample, a more robust Phase I control chart that can monitor OAR doses of new plans was established.


Subject(s)
Organs at Risk , Quality Control , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Algorithms
2.
Med Phys ; 51(2): 898-909, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127972

ABSTRACT

BACKGROUND: Radiotherapy dose predictions have been trained with data from previously treated patients of similar sites and prescriptions. However, clinical datasets are often inconsistent and do not contain the same number of organ at risk (OAR) structures. The effects of missing contour data in deep learning-based dose prediction models have not been studied. PURPOSE: The purpose of this study was to investigate the impacts of incomplete contour sets in the context of deep learning-based radiotherapy dose prediction models trained with clinical datasets and to introduce a novel data substitution method that utilizes automated contours for undefined structures. METHODS: We trained Standard U-Nets and Cascade U-Nets to predict the volumetric dose distributions of patients with head and neck cancers (HNC) using three input variations to evaluate the effects of missing contours, as well as a novel data substitution method. Each architecture was trained with the original contour (OC) inputs, which included missing information, hybrid contour (HC) inputs, where automated OAR contours generated in software were substituted for missing contour data, and automated contour (AC) inputs containing only automated OAR contours. 120 HNC treatments were used for model training, 30 were used for validation and tuning, and 44 were used for evaluation and testing. Model performance and accuracy were evaluated with global whole body dose agreement, PTV coverage accuracy, and OAR dose agreement. The differences in these values between dataset variations were used to determine the effects of missing data and automated contour substitutions. RESULTS: Automated contours used as substitutions for missing data were found to improve dose prediction accuracy in the Standard U-Net and Cascade U-Net, with a statistically significant difference in some global metrics and/or OAR metrics. For both models, PTV coverage between input variations was unaffected by the substitution technique. Automated contours in HC and AC datasets improved mean dose accuracy for some OAR contours, including the mandible and brainstem, with a greater improvement seen with HC datasets. Global dose metrics, including mean absolute error, mean error, and percent error were different for the Standard U-Net but not for the Cascade U-Net. CONCLUSION: Automated contours used as a substitution for contour data improved prediction accuracy for some but not all dose prediction metrics. Compared to the Standard U-Net models, the Cascade U-Net achieved greater precision.


Subject(s)
Head and Neck Neoplasms , Organs at Risk , Humans , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage , Software
3.
Med Phys ; 50(8): e865-e903, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37384416

ABSTRACT

PURPOSE: Electronic portal imaging devices (EPIDs) have been widely utilized for patient-specific quality assurance (PSQA) and their use for transit dosimetry applications is emerging. Yet there are no specific guidelines on the potential uses, limitations, and correct utilization of EPIDs for these purposes. The American Association of Physicists in Medicine (AAPM) Task Group 307 (TG-307) provides a comprehensive review of the physics, modeling, algorithms and clinical experience with EPID-based pre-treatment and transit dosimetry techniques. This review also includes the limitations and challenges in the clinical implementation of EPIDs, including recommendations for commissioning, calibration and validation, routine QA, tolerance levels for gamma analysis and risk-based analysis. METHODS: Characteristics of the currently available EPID systems and EPID-based PSQA techniques are reviewed. The details of the physics, modeling, and algorithms for both pre-treatment and transit dosimetry methods are discussed, including clinical experience with different EPID dosimetry systems. Commissioning, calibration, and validation, tolerance levels and recommended tests, are reviewed, and analyzed. Risk-based analysis for EPID dosimetry is also addressed. RESULTS: Clinical experience, commissioning methods and tolerances for EPID-based PSQA system are described for pre-treatment and transit dosimetry applications. The sensitivity, specificity, and clinical results for EPID dosimetry techniques are presented as well as examples of patient-related and machine-related error detection by these dosimetry solutions. Limitations and challenges in clinical implementation of EPIDs for dosimetric purposes are discussed and acceptance and rejection criteria are outlined. Potential causes of and evaluations of pre-treatment and transit dosimetry failures are discussed. Guidelines and recommendations developed in this report are based on the extensive published data on EPID QA along with the clinical experience of the TG-307 members. CONCLUSION: TG-307 focused on the commercially available EPID-based dosimetric tools and provides guidance for medical physicists in the clinical implementation of EPID-based patient-specific pre-treatment and transit dosimetry QA solutions including intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) treatments.

4.
J Appl Clin Med Phys ; 23(10): e13771, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36107002

ABSTRACT

The Professional Doctorate in Medical Physics (DMP) was originally conceived as a solution to the shortage of medical physics residency training positions. While this shortage has now been largely satisfied through conventional residency training positions, the DMP has expanded to multiple institutions and grown into an educational pathway that provides specialized clinical training and extends well beyond the creation of additional training spots. As such, it is important to reevaluate the purpose and the value of the DMP. Additionally, it is important to outline the defining characteristics of the DMP to assure that all existing and future programs provide this anticipated value. Since the formation and subsequent accreditation of the first DMP program in 2009-2010, four additional programs have been created and accredited. However, no guidelines have yet been recommended by the American Association of Physicists in Medicine. CAMPEP accreditation of these programs has thus far been based only on the respective graduate and residency program standards. This allows the development and operation of DMP programs which contain only the requisite Master of Science (MS) coursework and a 2-year clinical training program. Since the MS plus 2-year residency pathway already exists, this form of DMP does not provide added value, and one may question why this existing pathway should be considered a doctorate. Not only do we, as a profession, need to outline the defining characteristics of the DMP, we need to carefully evaluate the potential advantages and disadvantages of this pathway within our education and training infrastructure. The aims of this report from the Working Group on the Professional Doctorate Degree for Medical Physicists (WGPDMP) are to (1) describe the current state of the DMP within the profession, (2) make recommendations on the structure and content of the DMP for existing and new DMP programs, and (3) evaluate the value of the DMP to the profession of medical physics.


Subject(s)
Health Physics , Internship and Residency , Humans , United States , Health Physics/education , Accreditation , Research Report , Education, Medical, Graduate
6.
Phys Med Biol ; 66(21)2021 11 03.
Article in English | MEDLINE | ID: mdl-34352744

ABSTRACT

Volumetric modulated arc therapy planning is a challenging problem in high-dimensional, non-convex optimization. Traditionally, heuristics such as fluence-map-optimization-informed segment initialization use locally optimal solutions to begin the search of the full arc therapy plan space from a reasonable starting point. These routines facilitate arc therapy optimization such that clinically satisfactory radiation treatment plans can be created in a reasonable time frame. However, current optimization algorithms favor solutions near their initialization point and are slower than necessary due to plan overparameterization. In this work, arc therapy overparameterization is addressed by reducing the effective dimension of treatment plans with unsupervised deep learning. An optimization engine is then built based on low-dimensional arc representations which facilitates faster planning times.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Algorithms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
7.
J Appl Clin Med Phys ; 22(10): 36-44, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34432944

ABSTRACT

PURPOSE: To develop a simplified aluminum compensator system for total body irradiation (TBI) that is easy to assemble and modify in a short period of time for customized patient treatments. METHODS: The compensator is composed of a combination of 0.3 cm thick aluminum bars, two aluminum T-tracks, spacers, and metal bolts. The system is mounted onto a plexiglass block tray. The design consists of 11 fixed sectors spanning from the patient's head to feet. The outermost sectors utilize 7.6 cm wide aluminum bars, while the remaining sectors use 2.5 cm wide aluminum bars. There is a magnification factor of 5 from the compensator to the patient treatment plane. Each bar of aluminum is interconnected at each adjacent sector with a tongue and groove arrangement and fastened to the T-track using a metal washer, bolt, and nut. Inter-bar leakage of the compensator was tested using a water tank and diode. End-to-end measurements were performed with an ion chamber in a solid water phantom and also with a RANDO phantom using internal and external optically stimulated luminescent detectors (OSLDs). In-vivo patient measurements from the first 20 patients treated with this aluminum compensator were compared to those from 20 patients treated with our previously used lead compensator system. RESULTS: The compensator assembly time was reduced to 20-30 min compared to the 2-4 h it would take with the previous lead design. All end-to-end measurements were within 10% of that expected. The median absolute in-vivo error for the aluminum compensator was 3.7%, with 93.8% of measurements being within 10% of that expected. The median error for the lead compensator system was 5.3%, with 85.1% being within 10% of that expected. CONCLUSION: This design has become the standard compensator at our clinic. It allows for quick assembly and customization along with meeting the Task Group 29 recommendations for dose uniformity.


Subject(s)
Aluminum , Whole-Body Irradiation , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Med Phys ; 48(10): e808-e829, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34213772

ABSTRACT

Independent verification of the dose per monitor unit (MU) to deliver the prescribed dose to a patient has been a mainstay of radiation oncology quality assurance (QA). We discuss the role of secondary dose/MU calculation programs as part of a comprehensive QA program. This report provides guidelines on calculation-based dose/MU verification for intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) provided by various modalities. We provide a review of various algorithms for "independent/second check" of monitor unit calculations for IMRT/VMAT. The report makes recommendations on the clinical implementation of secondary dose/MU calculation programs; on commissioning and acceptance of various commercially available secondary dose/MU calculation programs; on benchmark QA and periodic QA; and on clinically reasonable action levels for agreement of secondary dose/MU calculation programs.


Subject(s)
Radiotherapy, Intensity-Modulated , Algorithms , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Research Report
9.
J Appl Clin Med Phys ; 22(8): 105-119, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34231950

ABSTRACT

PURPOSE: Deep-learning-based segmentation models implicitly learn to predict the presence of a structure based on its overall prominence in the training dataset. This phenomenon is observed and accounted for in deep-learning applications such as natural language processing but is often neglected in segmentation literature. The purpose of this work is to demonstrate the significance of class imbalance in deep-learning-based segmentation and recommend tuning of the neural network optimization objective. METHODS: An architecture and training procedure were chosen to represent common models in anatomical segmentation. A family of 5-block 2D U-Nets were independently trained to segment 10 structures from the Cancer Imaging Archive's Head-Neck-Radiomics-HN1 dataset. We identify the optimal threshold for our models according to their Dice score on the validation datasets and consider perturbations about the optimum. A measure of structure prominence in segmentation datasets is defined, and its impact on the optimal threshold is analyzed. Finally, we consider the use of a 2D Dice objective in addition to binary cross entropy. RESULTS: We observe significant decreases in perceived model performance with conventional 0.5-thresholding. Perturbations of as little as ±0.05 about the optimum threshold induce a median reduction in Dice score of 11.8% for our models. There is statistical evidence to suggest a weak correlation between training dataset prominence and optimal threshold (Pearson r = 0.92 and p ≈ 10 - 4 ). We find that network optimization with respect to the 2D Dice score itself significantly reduces variability due to thresholding but does not unequivocally create the best segmentation models when assessed with distance-based segmentation metrics. CONCLUSION: Our results suggest that those practicing deep-learning-based contouring should consider their postprocessing procedures as a potential avenue for improved performance. For intensity-based postprocessing, we recommend a mixed objective function consisting of the traditional binary cross entropy along with the 2D Dice score.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Probability
10.
Med Phys ; 48(9): 5152-5164, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33959978

ABSTRACT

PURPOSE: We propose a treatment planning framework that accounts for weekly lung tumor shrinkage using cone beam computed tomography (CBCT) images with a deep learning-based model. METHODS: Sixteen patients with non-small-cell lung cancer (NSCLC) were selected with one planning CT and six weekly CBCTs each. A deep learning-based model was applied to predict the weekly deformation of the primary tumor based on the spatial and temporal features extracted from previous weekly CBCTs. Starting from Week 3, the tumor contour at Week N was predicted by the model based on the input from all the previous weeks (1, 2 … N - 1), and was evaluated against the manually contoured tumor using Dice coefficient (DSC), precision, average surface distance (ASD), and Hausdorff distance (HD). Information about the predicted tumor was then entered into the treatment planning system and the plan was re-optimized every week. The objectives were to maximize the dose coverage in the target region while minimizing the toxicity to the surrounding healthy tissue. Dosimetric evaluation of the target and organs at risk (heart, lung, esophagus, and spinal cord) was performed on four cases, comparing between a conventional plan (ignoring tumor shrinkage) and the shrinkage-based plan. RESULTS: he primary tumor volumes decreased on average by 38% ± 26% during six weeks of treatment. DSCs and ASD between the predicted tumor and the actual tumor for Weeks 3, 4, 5, 6 were 0.81, 0.82, 0.79, 0.78 and 1.49, 1.59, 1.92, 2.12 mm, respectively, which were significantly superior to the score of 0.70, 0.68, 0.66, 0.63 and 2.81, 3.22, 3.69, 3.63 mm between the rigidly transferred tumors ignoring shrinkage and the actual tumor. While target coverage metrics were maintained for the re-optimized plans, lung mean dose dropped by 2.85, 0.46, 2.39, and 1.48 Gy for four sample cases when compared to the original plan. Doses in other organs such as esophagus were also reduced for some cases. CONCLUSION: We developed a deep learning-based model for tumor shrinkage prediction. This model used CBCTs and contours from previous weeks as input and produced reasonable tumor contours with a high prediction accuracy (DSC, precision, HD, and ASD). The proposed framework maintained target coverage while reducing dose in the lungs and esophagus.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Radiotherapy, Intensity-Modulated , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cone-Beam Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Male , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
11.
J Radiosurg SBRT ; 7(3): 223-232, 2021.
Article in English | MEDLINE | ID: mdl-33898086

ABSTRACT

The accuracy of stereotactic radiosurgery (SRS) to multiple metastases with a single-isocenter using high definition dynamic radiosurgery (HDRS) was evaluated across institutions. An SRS plan was delivered at six HDRS-capable institutions to an anthropomorphic phantom consisting of point, film, and 3D-gel dosimeters. Direct dose comparison and gamma analysis were used to evaluate the accuracy. Point measurements averaged across institutions were within 1.2±0.5%. The average gamma passing rate in the film was 96.6±2.2% (3%/2 mm). For targets within 4 cm of the isocenter, the 3D dosimetric gel gamma passing rate averaged across institutions was >90% (3%/2 mm). The targeting accuracy of high definition dynamic radiosurgery assessed by geometrical offset of the center of dose distributions across multiple institutions in this study was within 1 mm for targets within 4 cm of isocenter. Across variations in clinical practice, comparable dosimetry and localization is possible with this treatment planning and delivery technique.

12.
J Appl Clin Med Phys ; 22(4): 172-183, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33739569

ABSTRACT

PURPOSE: Studies have evaluated the viability of using open-face masks as an immobilization technique to treat intracranial and head and neck cancers. This method offers less stress to the patient with comparable accuracy to closed-face masks. Open-face masks permit implementation of surface guided radiation therapy (SGRT) to assist in positioning and motion management. Research suggests that changes in patient facial expressions may influence the SGRT system to generate false positional corrections. This study aims to quantify these errors produced by the SGRT system due to face motion. METHODS: Ten human subjects were immobilized using open-face masks. Four discrete SGRT regions of interest (ROIs) were analyzed based on anatomical features to simulate different mask openings. The largest ROI was lateral to the cheeks, superior to the eyebrows, and inferior to the mouth. The smallest ROI included only the eyes and bridge of the nose. Subjects were asked to open and close their eyes and simulate fear and annoyance and peak isocenter shifts were recorded. This was performed in both standard and SRS specific resolutions with the C-RAD Catalyst HD system. RESULTS: All four ROIs analyzed in SRS and Standard resolutions demonstrated an average deviation of 0.3 ± 0.3 mm for eyes closed and 0.4 ± 0.4 mm shift for eyes open, and 0.3 ± 0.3 mm for eyes closed and 0.8 ± 0.9 mm shift for eyes open. The average deviation observed due to changing facial expressions was 1.4 ± 0.9 mm for SRS specific and 1.6 ± 1.6 mm for standard resolution. CONCLUSION: The SGRT system can generate false positional corrections for face motion and this is amplified at lower resolutions and smaller ROIs. These errors should be considered in the overall tolerances and treatment plan when using open-face masks with SGRT and may warrant additional radiographic imaging.


Subject(s)
Head and Neck Neoplasms , Radiotherapy, Image-Guided , Humans , Masks , Motion , Radiography
13.
Med Phys ; 48(5): 2624-2636, 2021 May.
Article in English | MEDLINE | ID: mdl-33657650

ABSTRACT

PURPOSE: This study proposes a novel computational platform that we refer to as IDDRRA (DNA Damage Response to Ionizing RAdiation), which uses Monte Carlo (MC) simulations to score radiation induced DNA damage. MC simulations provide results of high accuracy on the interaction of radiation with matter while scoring the energy deposition based on state-of-the-art physics and chemistry models and probabilistic methods. METHODS: The IDDRRA software is based on the Geant4-DNA toolkit together with new tools that were developed for the purpose of this study, including a new algorithm that was developed in Python for the design of the DNA molecules. New classes were developed in C++ to integrate the GUI and produce the simulation's output in text format. An algorithm was also developed to analyze the simulation's output in terms of energy deposition, Single Strand Breaks (SSB), Double Strand Breaks (DSB) and Cluster Damage Sites (CDS). Finally, a new tool was developed to implement probabilistic SSB and DSB repair models using MC techniques. RESULTS: This article provides the first benchmarks that the user of the IDDRRA tool can use to validate the functionality of the software as well as to provide a starting point to produce different types of DNA simulations. These benchmarks incorporate different kind of particles (e-, e+, protons, electron spectrum) and DNA molecules. CONCLUSION: We have developed the IDDRRA tool and demonstrated its use to study various aspects of the modeling and simulation of a DNA irradiation experiment. The tool is expandable and can be expanded by other users with new benchmarks and applications based on the user's needs and experience. New functionality will be added over time, including the quantification of the indirect damage.


Subject(s)
DNA Damage , Radiation, Ionizing , Computer Simulation , DNA/genetics , Monte Carlo Method
14.
J Appl Clin Med Phys ; 21(10): 40-47, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32779832

ABSTRACT

PURPOSE: To create an open-source visualization program that allows one to find potential cone collisions while planning intracranial stereotactic radiosurgery cases. METHODS: Measurements of physical components in the treatment room (gantry, cone, table, localization stereotactic radiation surgery frame, etc.) were incorporated into a script in MATLAB (MathWorks, Natick, MA) that produces three-dimensional visualizations of the components. A localization frame, used during simulation, fully contains the patient. This frame was used to represent a safety zone for collisions. Simple geometric objects are used to approximate the simulated components. The couch is represented as boxes, the gantry head and cone are represented by cylinders, and the patient safety zone can be represented by either a box or ellipsoid. These objects are translated and rotated based upon the beam geometry and the treatment isocenter to mimic treatment. A simple graphical user interface (GUI) was made in MATLAB (compatible with GNU Octave) to allow users to pass the treatment isocenter location, the initial and terminal gantry angles, the couch angle, and the number of angular points to visualize between the initial and terminal gantry angle. RESULTS: The GUI provides a fast and simple way to discover collisions in the treatment room before the treatment plan is completed. Twenty patient arcs were used as an end-to-end validation of the system. Seventeen of these appeared the same in the software as in the room. Three of the arcs appeared closer in the software than in the room. This is due to the treatment couch having rounded corners, whereas the software visualizes sharp corners. CONCLUSIONS: This simple GUI can be used to find the best orientation of beams for each patient. By finding collisions before a plan is being simulated in the treatment room, a user can save time due to replanning of cases.


Subject(s)
Radiosurgery , Computer Simulation , Humans , Imaging, Three-Dimensional , Radiotherapy Planning, Computer-Assisted , Software
15.
J Appl Clin Med Phys ; 21(9): 187-192, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32790207

ABSTRACT

PURPOSE: Prognostic indices such as the Brain Metastasis Graded Prognostic Assessment have been used in clinical settings to aid physicians and patients in determining an appropriate treatment regimen. These indices are derivative of traditional survival analysis techniques such as Cox proportional hazards (CPH) and recursive partitioning analysis (RPA). Previous studies have shown that by evaluating CPH risk with a nonlinear deep neural network, DeepSurv, patient survival can be modeled more accurately. In this work, we apply DeepSurv to a test case: breast cancer patients with brain metastases who have received stereotactic radiosurgery. METHODS: Survival times, censorship status, and 27 covariates including age, staging information, and hormone receptor status were provided for 1673 patients by the NCDB. Monte Carlo cross-validation with 50 samples of 1400 patients was used to train and validate the DeepSurv, CPH, and RPA models independently. DeepSurv was implemented with L2 regularization, batch normalization, dropout, Nesterov momentum, and learning rate decay. RPA was implemented as a random survival forest (RSF). Concordance indices of test sets of 140 patients were used for each sample to assess the generalizable predictive capacity of each model. RESULTS: Following hyperparameter tuning, DeepSurv was trained at 32 min per sample on a 1.33 GHz quad-core CPU. Test set concordance indices of 0.7488 ± 0.0049, 0.6251 ± 0.0047, and 0.7368 ± 0.0047, were found for DeepSurv, CPH, and RSF, respectively. A Tukey HSD test demonstrates a statistically significant difference between the mean concordance indices of the three models. CONCLUSION: Our results suggest that deep learning-based survival prediction can outperform traditional models, specifically in a case where an accurate prognosis is highly clinically relevant. We recommend that where appropriate data are available, deep learning-based prognostic indicators should be used to supplement classical statistics.


Subject(s)
Brain Neoplasms , Deep Learning , Radiosurgery , Brain Neoplasms/surgery , Humans , Retrospective Studies , Survival Analysis
17.
J Appl Clin Med Phys ; 21(9): 107-115, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681753

ABSTRACT

PURPOSE: Single-isocenter multiple brain metastasis stereotactic radiosurgery is an efficient treatment modality increasing in clinical practice. The need to provide accurate, patient-specific quality assurance (QA) for these plans is met by several options. This study reviews some of these options and explores the use of the Octavius 4D as a solution for patient-specific plan quality assurance. METHODS: The Octavius 4D Modular Phantom (O4D) with the 1000 SRS array was evaluated in this study. The array consists of 977 liquid-filled ion chambers. The center 5.5 cm × 5.5 cm area has a detector spacing of 2.5 mm. The ability of the O4D to reconstruct three-dimensional (3D) dose was validated against a 3D gel dosimeter, ion chamber, and film measurements. After validation, 15 patients with 2-11 targets had their plans delivered to the phantom. The criteria used for the gamma calculation was 3%/1 mm. The portion of targets which were measurable by the phantom was countable. The accompanying software compiled the measured doses allowing each target to be counted from the measured dose distribution. RESULTS: Spatial resolution was sufficient to verify the high dose distributions characteristic of SRS. Amongst the 15 patients there were 74 targets. Of the 74 targets, 61 (82%) of them were visible on the measured dose distribution. The average gamma passing rate was 99.3% (with sample standard deviation of 0.68%). CONCLUSIONS: The high resolution provided by the O4D with 1000 SRS board insert allows for very high-resolution measurement. This high resolution in turn can allow for high gamma passing rates. The O4D with the 1000 SRS array is an acceptable method of performing quality assurance for single-isocenter multiple brain metastasis SRS.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain Neoplasms/surgery , Humans , Phantoms, Imaging , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software
18.
J Med Phys ; 45(3): 143-147, 2020.
Article in English | MEDLINE | ID: mdl-33487926

ABSTRACT

PURPOSE: Monaco treatment planning system (TPS) version 5.1 uses a Monte-Carlo (MC)-based dose calculation engine. The aim of this study is to verify and compare the Monaco-based dose calculations with both Pinnacle3 collapsed cone convolution superposition (CCCS) and Eclipse anisotropic analytical algorithm (AAA) calculations. MATERIALS AND METHODS: For this study, 18 previously treated lung and head-and-neck (HN) cancer patients were chosen to compare the dose calculations between Pinnacle, Monaco, and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a Novalis Tx linac. All of the treated volumetric-modulated arc therapy plans used 6 MV or 10 MV photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for intercomparison. RESULTS: To compare the dose calculations, Planning target volume (PTV) heterogeneity indexes and conformity indexes were calculated from the dose volume histograms (DVH) of all plans. While mean lung dose (MLD), lung V5 and V20 values were recorded for lung plans, the computed dose to parotids, brainstem, and mandible were documented for HN plans. In plan evaluation, percent differences of the above dosimetric values in Monaco computation were compared against each of the other TPS computations. CONCLUSION: It could be concluded through this research that there can be differences in the calculation of dose across different TPSs. Although relatively small, these differences could become apparent when compared using DVH. These differences most likely arise from the different dose calculation algorithms used in each TPS. Monaco employs the MC allowing it to have much more detailed calculations that result in it being seen as the most accurate and the gold standard.

19.
Med Phys ; 47(1): 260-266, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31660622

ABSTRACT

PURPOSE: The purpose of this work is to introduce a simple yet accurate technique to measure the dose enhancement factor (DEF) of a citrate-capped gold nanoparticle (GNP) solution using EBT3 film in an 192 Ir setup. METHODS: Dose enhancement factor is the ratio of absorbed dose in a solution compared to absorbed dose in water, assuming identical irradiation parameters. Citrate-capped GNPs were synthesized. An acrylic apparatus was constructed such that the EBT3 film was placed in charged particle equilibrium within the GNP solution with 0.28%, 0.56%, and 0.77% gold by mass. Sets of 12 dose measurements were collected for each GNP concentration as well as for water. The expected value of DEF was also calculated with the effective mass absorption coefficient of the GNP solution and water for an 192 Ir spectrum. Furthermore, Burlin cavity correction factors were calculated and experimentally verified. Experimental verification of the cavity correction was performed by measuring DEF using stacks of 1, 3, and 5 sheets of film and extrapolating the DEF to 0 sheets of film. RESULTS: Experimental cavity corrections agreed with those calculated with the Burlin cavity formalism. The calculated DEF was 1.013, 1.027, and 1.037 for the 0.28%, 0.56%, and 0.77% gold by mass GNP solutions, respectively. The corresponding uncorrected DEF measurement values were 1.013 ± 0.006, 1.024 ± 0.010, and 1.032 ± 0.006, respectively. When applying the Burlin cavity formalism, the final corrected DEF measurement values were 1.016 ± 0.006, 1.029 ± 0.010, and 1.039 ± 0.006, respectively. CONCLUSIONS: The experimental cavity correction results agreed with the theoretical Burlin calculations, which allowed for the Burlin corrections to be performed for all GNP concentrations and measured DEF values. The adjusted DEF values agreed with the theoretical calculations. Thus, these results indicate that a Burlin cavity calculation can be applied to correct film-based DEF measurements for 192 Ir.


Subject(s)
Film Dosimetry , Gold/chemistry , Metal Nanoparticles , Citric Acid/chemistry
20.
Technol Cancer Res Treat ; 18: 1533033819892255, 2019.
Article in English | MEDLINE | ID: mdl-31789113

ABSTRACT

INTRODUCTION: This research quantifies and compares the effect of hip prostheses on dose distributions calculated using collapsed cone convolution superposition and Monte Carlo (with and without correcting for the density of the implant and surrounding tissues). The use of full volumetric modulated arc therapy arcs versus volumetric modulated arc therapy arcs avoiding the hip implants (skip arcs) was also studied. MATERIALS AND METHODS: Six prostate patients with hip prostheses were included in this study. The hip prostheses and the streaking artifacts on the computed tomography images were contoured by a single physician, and full volumetric modulated arc therapy arcs were created in the Pinnacle3 TPS. Copies of each plan were made, and the doses were recalculated with the densities of the prostheses and surrounding tissues overridden. The plans were then exported to Monaco and recalculated using a Monte Carlo dose calculation algorithm, with and without densities of the prosthesis and surrounding tissues overridden. RESULTS: With density overrides, Pinnacle3 had a 4.4% error for ion chamber measurements. Monaco was within 0.2% of ion chamber measurement when density overrides were used. On average, when density overrides were used in Pinnacle3 for patient dose calculations, the planning target volume D95 value dropped from 99.3% to 82.7%. Monaco also showed decreased planning target volume coverage when plans were recalculated with correct density information. Full arc plans (with density overrides) for the patient with a bilateral prosthesis provided significant bladder sparing and some rectal sparing compared to skip arc plans. CONCLUSION: When planning for prostate patients with hip prostheses, correct density information for implants and surrounding tissues should be used to optimize the plan and ensure optimal accuracy. If available, a Monte Carlo algorithm should be used as a second check. Full arcs could be used to spare dose to organs at risk, while maintaining adequate planning target volume coverage, when using a Monte Carlo dose calculation algorithm.


Subject(s)
Hip Prosthesis , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/standards , Algorithms , Humans , Phantoms, Imaging , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...