Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Apoptosis ; 10(4): 809-20, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16133871

ABSTRACT

The function of the proteasome has been linked to various pathologies, including cancer and neurodegeneration. Proteasomal inhibition can lead to death in a variety of cell types, however the manner in which this occurs is unclear, and may depend on the particular cell type. In this work we have extended previous findings pertaining to the effects of pharmacological proteasomal inhibitors on PC12 cells, by examining in more detail the induced death pathway. We find that cell death is apoptotic by ultrastructural criteria. Caspase 9 and 3 are processed, cytochrome c is released from the mitochondria and a dominant negative form of caspase 9 prevents death. Furthermore, Bax undergoes a conformational change and is translocated to the mitochondria in a caspase-independent fashion. Total cell levels of Bax however do not change, whereas levels of the BH3-only protein Bim increase with proteasomal inhibition. Transient overexpression of bcl-xL or, to a lesser extent, of bcl-2, significantly decreased apoptotic death and prevented Bax conformational change. We conclude that death elicited by proteasomal inhibition of PC12 cells follows a classical "intrinsic" pathway. Significantly, antiapoptotic bcl-2 family members prevent apoptosis by inhibiting Bax conformational change. Increased levels of Bim may contribute to cell death in this model.


Subject(s)
Apoptosis , Proteasome Inhibitors , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism , Acetylcysteine/analogs & derivatives , Acetylcysteine/pharmacology , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Caspase 9/metabolism , Cytochromes c/metabolism , Gene Expression/drug effects , Genes, Dominant , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/metabolism , PC12 Cells , Protein Processing, Post-Translational/drug effects , Protein Structure, Quaternary/drug effects , Protein Transport/drug effects , Proto-Oncogene Proteins/metabolism , Rats , bcl-X Protein/genetics
2.
Cell Death Differ ; 11(6): 618-30, 2004 Jun.
Article in English | MEDLINE | ID: mdl-14765136

ABSTRACT

In human cell lines, the caspase 2 adaptor RAIDD interacts selectively with caspase 2 through its caspase recruitment domain (CARD) and leads to caspase 2-dependent death. Whether RAIDD induces such effects in neuronal cells is unknown. We have previously shown that caspase 2 is essential for apoptosis of trophic factor-deprived PC12 cells and rat sympathetic neurons. We report here that rat RAIDD, cloned from PC12 cells, interacts with rat caspase 2 CARD. RAIDD overexpression induced caspase 2 CARD- and caspase 9-dependent apoptosis of PC12 cells and sympathetic neurons. Apoptosis correlated with the formation of discrete perinuclear aggregates. Both death and aggregates required the expression of full-length RAIDD. Such aggregates may enable more effective activation of caspase 2 through close proximity. Following trophic deprivation, RAIDD overexpression increased death and aggregate formation. Therefore, RAIDD aggregation is important for its death-promoting effects and may play a role in trophic factor withdrawal-induced neuronal apoptosis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/physiology , Neurons/metabolism , Sympathetic Nervous System/metabolism , Animals , CRADD Signaling Adaptor Protein , Caspase 2 , Caspases/metabolism , Humans , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...