Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Aging Dis ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38300639

ABSTRACT

Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.

2.
J Aging Health ; : 8982643231220436, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38069820

ABSTRACT

OBJECTIVE: The aim is to explore the role of anthropometric traits and sociodemographic characteristics on human survival. METHODS: Anthropometrics and sociodemographic data of 1944 conscripts born in the first decade of the 20th century in rural municipalities of Calabria (Southern Italy) who underwent medical examinations for military service were collected. Medical examinations were linked to individual survival data. RESULTS: Height and type of occupation influenced life expectancy. For taller men, the risk of mortality increases by about 20% when compared with men with middle height, while farmers exhibited a significant survival advantage compared to those with other working experiences. DISCUSSION: Height and type of occupation were associated with human mortality. These results are likely to be related to the effect of healthy dietary patterns and physical activity on life expectancy. Further studies are needed to understand to what extent these results obtained in a rural context can be generalized to other contexts.

3.
Ageing Res Rev ; 91: 102068, 2023 11.
Article in English | MEDLINE | ID: mdl-37704050

ABSTRACT

Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aß) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.


Subject(s)
Alzheimer Disease , Epstein-Barr Virus Infections , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , RNA, Viral , Herpesvirus 4, Human/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Virus Diseases/complications , Zika Virus/genetics , Zika Virus/metabolism
4.
Microbiol Spectr ; 11(3): e0458322, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37184386

ABSTRACT

Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.


Subject(s)
Escherichia coli , Transcriptome , Animals , Humans , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Drug Resistance, Microbial , Epigenesis, Genetic , Microbial Sensitivity Tests
5.
Immun Ageing ; 20(1): 16, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038200

ABSTRACT

BACKGROUND: Immunosenescence is a complex process characterized by an age-related remodelling of immune system. The prominent effects of the immunosenescence process is the thymic involution and, consequently, the decreased numbers and functions of T cells. Since thymic involution results in a collapse of the T-cell receptor (TCR) repertoire, a reliable biomarker of its activity is represented by the quantification of signal joint T-cell receptor rearrangement excision circles (sjTRECs) levels. Although it is reasonable to think that thymic function could play a crucial role on elderly survival, only a few studies investigated the relationship between an accurate measurement of human thymic function and survival at old ages. METHODS AND FINDINGS: By quantifying the amount sjTRECs by real-time polymerase chain reaction (PCR), the decrease in thymic output in 241 nursing home residents from Calabria (Southern Italy) was evaluated to investigate the relationship between thymic function and survival at old ages. We found that low sjTREC levels were associated with a significant increased risk of mortality at older ages. Nursing home residents with lower sjTREC exhibit a near 2-fold increase in mortality risk compared to those with sjTREC levels in a normal range. CONCLUSION: Thymic function failure is an independent predictor of mortality among elderly nursing home residents. sjTREC represents a biomarker of effective ageing as its blood levels could anticipate individuals at high risk of negative health outcomes. The identification of these subjects is crucial to manage older people's immune function and resilience, such as, for instance, to plan more efficient vaccinal campaigns in older populations.

6.
Int J Mol Sci ; 24(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36768576

ABSTRACT

The prediction of chronological age from methylation-based biomarkers represents one of the most promising applications in the field of forensic sciences. Age-prediction models developed so far are not easily applicable for forensic caseworkers. Among the several attempts to pursue this objective, the formulation of single-locus models might represent a good strategy. The present work aimed to develop an accurate single-locus model for age prediction exploiting ELOVL2, a gene for which epigenetic alterations are most highly correlated with age. We carried out a systematic review of different published pyrosequencing datasets in which methylation of the ELOVL2 promoter was analysed to formulate age prediction models. Nine of these, with available datasets involving 2298 participants, were selected. We found that irrespective of which model was adopted, a very strong relationship between ELOVL2 methylation levels and age exists. In particular, the model giving the best age-prediction accuracy was the gradient boosting regressor with a prediction error of about 5.5 years. The findings reported here strongly support the use of ELOVL2 for the formulation of a single-locus epigenetic model, but the inclusion of additional, non-redundant markers is a fundamental requirement to apply a molecular model to forensic applications with more robust results.


Subject(s)
Aging , Forensic Genetics , Child, Preschool , Humans , Aging/genetics , CpG Islands , DNA Methylation , Epigenesis, Genetic , Forensic Genetics/methods
7.
Sci Rep ; 12(1): 12803, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896692

ABSTRACT

IrisPlex system represents the most popular model for eye colour prediction. Based on six polymorphisms this model provides very accurate predictions that strongly depend on the definition of eye colour phenotypes. The aim of the present study was to introduce a new approach to improve eye colour prediction using the well-validated IrisPlex system. A sample of 238 individuals from a Southern Italian population was collected and for each of them a high-resolution image of eye was obtained. By quantifying eye colour variation into CIELAB space several clustering algorithms were applied for eye colour classification. Predictions with the IrisPlex model were obtained using eye colour categories defined by both visual inspection and clustering algorithms. IrisPlex system predicted blue and brown eye colour with high accuracy while it was inefficient in the prediction of intermediate eye colour. Clustering-based eye colour resulted in a significantly increased accuracy of the model especially for brown eyes. Our results confirm the validity of the IrisPlex system for forensic purposes. Although the quantitative approach here proposed for eye colour definition slightly improves its prediction accuracy, further research is still required to improve the model particularly for the intermediate eye colour prediction.


Subject(s)
Eye Color , Polymorphism, Single Nucleotide , Algorithms , DNA/genetics , Eye Color/genetics , Phenotype
8.
Front Med (Lausanne) ; 9: 870835, 2022.
Article in English | MEDLINE | ID: mdl-35559339

ABSTRACT

Background: According to the international literature, the percentage of nursing home (NH) residents with renal insufficiency is very high, ranging between 22 and 78%. Diminished kidney function represents a risk factor for drug overdosage, adverse drug reactions, end-stage renal disease, disability, morbidity, and mortality. Several studies suggested that screening for chronic kidney disease (CKD) in high-risk and older populations may represent a cost-effective approach to reducing progression to renal failure and CKD mortality. Objective: This study aimed (i) to investigate to what extent CKD may be staged interchangeably by three different creatinine-based estimated glomerular filtration rate (eGFR) equations in a sample of older adults living in long-term care facilities; (ii) to investigate factors explaining differences among eGFR equations; and (iii) to compare the predictivity of different creatinine-based eGFR equations with respect to all-cause mortality. Methods: A total of 522 residents aged 65 years and older participated in a prospective cohort study of 9 long-term care facilities in Calabria. eGFR was calculated by Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), Berlin initiative study (BIS), and full age spectrum (FAS) equations. Disability in at least one activity of daily living (ADL), depression, cognitive impairment, comorbidity, and malnutrition was considered in the analysis. Statistical analysis was carried out by Bland-Altman analysis, and 2-year mortality was investigated by Kaplan-Meier curves and Cox regression analysis. Results: Depending on the adopted equation, the prevalence of NH residents with impaired renal function (eGFR < 60 ml/min/1.73 m2) ranged between 58.2% for the CKD-EPI and 79.1% for the BIS1 equation. The average difference between BIS and FAS was nearly negligible (0.45 ml/min/1.73 m2), while a significant bias was detected between CKD-EPI and BIS and also between CKD-EPI and FAS (6.21 ml/min/1.73 m2 and 6.65 ml/min/1.73 m2, respectively). Although the eGFR study equations had comparable prognostic accuracy in terms of mortality risk, BIS and FAS were able to reclassify NH residents pertaining to a low-risk group with CKD-EPI, and this reclassification improves the discriminative capacity of CKD-EPI with respect to overall mortality. Conclusion: Despite the relatively good correlation between eGFRs calculated using all adopted equations, the findings in this study reported clearly demonstrated that CKD-EPI and BIS/FAS equations are not interchangeable to assess eGFR among older people and particularly in institutionalized and frail older subjects.

9.
Nutrients ; 14(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35334889

ABSTRACT

Nutrition plastically modulates the epigenetic landscape in various tissues of an organism during life via epigenetic changes. In the present study, to clarify whether this modulation involves RNA methylation, we evaluated global RNA methylation profiles and the expression of writer, reader, and eraser genes, encoding for enzymes involved in the RNA methylation. The study was carried out in the heart, liver, and kidney samples from rats of different ages in response to a low-calorie diet. We found that, although each tissue showed peculiar RNA methylation levels, a general increase in these levels was observed throughout the lifespan as well as in response to the six-month diet. Similarly, a prominent remodeling of the expression of writer, reader, and eraser genes emerged. Our data provide a comprehensive overview of the role exerted by diet on the tissue-specific epigenetic plasticity of RNA according to aging in rats, providing the first evidence that methylation of RNA, similarly to DNA methylation, can represent an effective biomarker of aging. What is more, the fact that it is regulated by nutrition provides the basis for the development of targeted approaches capable of guaranteeing the maintenance of a state of good health.


Subject(s)
Epigenomics , RNA , Animals , DNA Methylation , Epigenesis, Genetic , Nutritional Status , RNA/genetics , Rats
10.
Nutrients ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057572

ABSTRACT

Natural compounds have historically had a wide application in nutrition. Recently, a fundamental role has been identified for essential oils extracted from aromatic plants for their nutritional, antimicrobial, and antioxidant properties, and as food preservatives. In the present study, essential oils (EOs) from ten aromatic plants grown in Calabria (Italy), used routinely to impart aroma and taste to food, were evaluated for their antibacterial activity. This activity was investigated against Escherichia coli strain JM109, and its derived antibiotic-resistant cells selected by growing the strain at low concentrations of ampicillin, ciprofloxacin, and gentamicin by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Although all the essential oils showed bactericidal activity, those from Clinopodium nepeta, Origanum vulgare, and Foeniculum vulgare displayed the greatest inhibitory effects on the bacterial growth of all cell lines. It is plausible that the antibacterial activity is mediated by epigenetic modifications since the tested essential oils induce methylation both at adenine and cytosine residues in the genomes of most cell lines. This study contributes to a further characterization of the properties of essential oils by shedding new light on the molecular mechanisms that mediate these properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Epigenesis, Genetic , Oils, Volatile/pharmacology , Plant Oils/pharmacology , DNA Methylation , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Foeniculum/chemistry , Foeniculum/genetics , Italy , Lamiaceae/chemistry , Lamiaceae/genetics , Microbial Sensitivity Tests , Odorants , Oils, Volatile/chemistry , Origanum/chemistry , Origanum/genetics , Plant Oils/chemistry , Plants/chemistry , Taste
11.
Cells ; 12(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36611826

ABSTRACT

In the last decade, extensive efforts have been made to identify biomarkers of biological age. DNA methylation levels of ELOVL fatty acid elongase 2 (ELOVL2) and the signal joint T-cell receptor rearrangement excision circles (sjTRECs) represent the most promising candidates. Although these two non-redundant biomarkers echo important biological aspects of the ageing process in humans, a well-validated molecular clock exploiting these powerful candidates has not yet been formulated. The present study aimed to develop a more accurate molecular clock in a sample of 194 Italian individuals by re-analyzing the previously obtained EVOLV2 methylation data together with the amount of sjTRECs in the same blood samples. The proposed model showed a high prediction accuracy both in younger individuals with an error of about 2.5 years and in older subjects where a relatively low error was observed if compared with those reported in previously published studies. In conclusion, an easy, cost-effective and reliable model to measure the individual rate and the quality of aging in human population has been proposed. Further studies are required to validate the model and to extend its use in an applicative context.


Subject(s)
Aging , DNA Methylation , Humans , Aged , Aging/genetics , DNA Methylation/genetics , Biomarkers , DNA
12.
J Forensic Sci ; 65(5): 1424-1431, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32453457

ABSTRACT

Forensic DNA phenotyping refers to an emerging field of forensic sciences aimed at the prediction of externally visible characteristics of unknown sample donors directly from biological materials. The aging process significantly affects most of the above characteristics making the development of a reliable method of age prediction very important. Today, the so-called "epigenetic clocks" represent the most accurate models for age prediction. Since they are technically not achievable in a typical forensic laboratory, forensic DNA technology has triggered efforts toward the simplification of these models. The present study aimed to build an epigenetic clock using a set of methylation markers of five different genes in a sample of the Italian population of different ages covering the whole span of adult life. In a sample of 330 subjects, 42 selected markers were analyzed with a machine learning approach for building a prediction model for age prediction. A ridge linear regression model including eight of the proposed markers was identified as the best performing model across a plethora of candidates. This model was tested on an independent sample of 83 subjects providing a median error of 4.5 years. In the present study, an epigenetic model for age prediction was validated in a sample of the Italian population. However, its applicability to advanced ages still represents the main limitation in forensic caseworks.


Subject(s)
Aging/genetics , Epigenesis, Genetic , Forensic Genetics/methods , Adult , Aged , Aged, 80 and over , CpG Islands , DNA Methylation , Fatty Acid Elongases/genetics , Female , Genetic Markers , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM-Homeodomain Proteins/genetics , Linear Models , Machine Learning , Male , Middle Aged , Muscle Proteins/genetics , Polymerase Chain Reaction , Transcription Factors/genetics , Tripartite Motif Proteins/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...