Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 74(4): 557-62, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20452007

ABSTRACT

In the pig ovary, the transition from primordial to primary and secondary ovarian follicles begins before birth, but antral follicles can be observed, for the first time, at approximately 60-90 d of age. At approximately the same time, secondary follicles become responsive to gonadotropins, leading to the formation of antral follicles. Placing pieces of ovarian tissue under the kidney capsule of immunodeficient (SCID) mice allows the requirements for follicular recruitment and development to be studied. The objective of this study was to investigate if primordial follicles contained in ovarian fragments isolated from newborn piglets (36 +/- 12 h old) and immediately transplanted under the kidney capsule of SCID mice, are able to become responsive to gonadotropins after 60 d (as in an unaltered animal). Ovarian fragments were transplanted under the kidney capsule of three groups of four female and four male SCID mice. The first group did not receive any hormonal treatment for 12 wk. The second group was treated from the 9th week with 1 IU of FSH/LH on alternating days for 3 wk, and the third group was treated with 5 IU Pregnant Mare Serum Ganadotropin (PMSG) 48 h before euthanasia. Primordial follicles contained in ovarian fragments isolated from newborn piglets developed only to the secondary stage. Therefore, development of gonadotropin responsiveness in ovarian fragments xenotransplanted in SCID mice was delayed compared to what occurs in the unaltered animal, and there was minimal response to exogenous gonadotropins.


Subject(s)
Follicle Stimulating Hormone/pharmacology , Luteinizing Hormone/pharmacology , Ovary/transplantation , Swine/growth & development , Animals , Female , Male , Mice , Mice, SCID , Ovarian Follicle/drug effects , Ovarian Follicle/growth & development , Ovarian Follicle/transplantation , Ovary/drug effects , Ovary/pathology , Transplantation, Heterologous
2.
Theriogenology ; 62(6): 1003-11, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15289043

ABSTRACT

This study was conducted to determine whether ovarian morphology and developmental competence of in vitro-matured (IVM) oocytes is immediately affected by the onset of puberty in the pig. Ovaries of peri-pubertal pigs were sorted into two groups according to the presence or absence of corpora lutea presence (CL and NCL, respectively. Ovary dimensions, follicle diameter and number, and oocyte diameter (with and without zona pellucidae) were determined. The developmental competence of in vitro-matured oocytes from these two groups was evaluated following parthenogenetic activation and culture in vitro. CL ovaries were significantly (P<0.01) larger than NCL ovaries (width: 22.3+/-0.9 mm versus 15.9+/-0.4 mm, length: 33.2+/-1 mm versus 24.1+/-0.4 mm). Although CL ovaries had fewer antral follicles in total compared with NCL ovaries (21.1+/-1.8 mm versus 46.8+/-2.2 mm), they had a similar number of follicles 3-8mm in diameter. The mean diameter of follicles that were aspirated was greater for CL ovaries than for NCL ovaries (4.5+/-0.1 mm versus 3.3+/-0.02 mm). Oocytes from CL ovaries were greater in diameter compared with those from NCL ovaries (zona retained: 159+/-1.3 microm versus 146.1+/-1.5 microm, zona free: 124.7+/-1.8 microm versus 113.1+/-1.6 microm). No differences were found between oocytes from CL and NCL ovaries for rates of meiotic maturation (91.6+/-3.2% versus 92.4+/-3.2%), cleavage (88.4+/-11% versus 90.7+/-2.6%) and blastocyst formation (21.0+/-3.7% versus 23.7+/-5.7%). Therefore, the onset of puberty coincides with immediate changes in ovarian morphology, increased ovary size, follicle and oocyte diameter, but not with improved oocyte developmental competence. This suggests that the higher developmental competence usually observed in adult oocytes is acquired gradually and requires exposure to multiple estrus cycles.


Subject(s)
Oocytes/cytology , Oocytes/growth & development , Ovarian Follicle/anatomy & histology , Ovary/anatomy & histology , Sexual Maturation , Swine/growth & development , Animals , Blastocyst/physiology , Culture Techniques , Female , Parthenogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...