Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7885, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193686

ABSTRACT

Existing approaches to robotic manipulation often rely on external mechanical devices, such as hydraulic and pneumatic devices or grippers. Both types of devices can be adapted to microrobots only with difficulties and for nanorobots not all. Here, we present a fundamentally different approach that is based on tuning the acting surface forces themselves rather than applying external forces by grippers. Tuning of forces is achieved by the electrochemical control of an electrode's diffuse layer. Such electrochemical grippers can be integrated directly into an atomic force microscope, allowing for 'pick and place' procedures typically used in macroscopic robotics. Due to the low potentials involved, small autonomous robots could as well be equipped with these electrochemical grippers that will be particularly useful in soft robotics as well as nanorobotics. Moreover, these grippers have no moving parts and can be incorporated in new concepts for actuators. The concept can easily be scaled down and applied to a wide range of objects, such as colloids, proteins, and macromolecules.

2.
Chem Commun (Camb) ; 53(54): 7592-7595, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28639647

ABSTRACT

Polymer membranes (PEMs) within fuel cells (FCs) act as separators and efficient proton conducting electrolytes. Established systems tend to microphase separation into hydrophilic and hydrophobic regions, making these materials prone to water loss at elevated temperatures. Therefore, recent approaches utilize porous materials, which promise stronger interactions between water molecules and the framework, while still providing efficient conductive pathways. Here we show, that the microporous polymer PAF-1 exhibits proton conductivities up to 10-1 S cm-1 under hydrous conditions, after post-synthetic sulfonation. Gas phase sulfonation turned out to be the essential step for introducing a sufficiently large amount of -SO3H groups and thus a high charge carrier concentration upon hydration. While the absolute conductivity of the sulfonated frameworks strongly depends on the water uptake, we found similar activation barriers for all relative humidities. Since water is homogeneously stored in micro- and mesoporous voids, the activation barrier of the interpore conductivity is decisive for the macroscopic properties.

3.
Rev Sci Instrum ; 83(11): 116103, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23206110

ABSTRACT

In this note we present a novel approach to prepare colloidal probes for atomic force microscopy by sintering. A central element of this procedure is the introduction of an inorganic "fixation neck" between the cantilever and a micrometer-sized silica particle that is acting as probe. This procedure overcomes previous restrictions for the probe particles, which had to be low melting point materials, such as borosilicate glass or latex particles. The here-presented colloidal probes from silica can withstand large mechanical forces. Additionally, they have high chemical resistivity due to the absence of adhesives and the well-studied surface chemistry of colloidal silica.

4.
Eur Phys J E Soft Matter ; 10(2): 103-14, 2003 Feb.
Article in English | MEDLINE | ID: mdl-15011063

ABSTRACT

The functionalisation of a surface with an organic monolayer containing photoactive moieties such as the azobenzene chromophore opens an elegant route for controlling its wettability by light. In this paper we investigate the microscopic origin of the macroscopic change in wettability upon photo-induced cis-trans isomerization of a copolymeric diphenyl-diazene Langmuir-Blodgett monolayer. Polarised UV-Vis and FTIR spectroscopy have been used to monitor the orientational order of various functional groups, Atomic Force Microscopy and Imaging Ellipsometry is employed for the quantification of the surface roughness and morphology, contact angle and surface potential measurements are carried out for a characterisation of the polar ordering. The data analysis is further supported by semi-empirical and ab-initio calculations of the molecular dipole moments and the normal IR-modes of the fluorinated chromophore. The combination of all these techniques provides a detailed molecular picture. The data suggest that changes in the projection of the dipole moment onto the surface normal caused by isomerization of the azobenzene are responsible for the observed changes in the surface energy. This knowledge allowed us to predict guidelines for the synthesis of molecules in order to maximize the wetting contrast upon photo-irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...