Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15001, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951618

ABSTRACT

Daylight saving time (DST) is currently utilized in many countries with the rationale that it enhances the alignment between daylight hours and activity peaks in the population. The act of transitioning into and out of DST introduces disruptions to the circadian rhythm, thereby impacting sleep and overall health. Despite the substantial number of individuals affected, the consequences of this circadian disruption have often been overlooked. Here, we employ a mathematical model of the human circadian pacemaker to elucidate how the biological clock interacts with daytime and evening exposures to both natural and electrical light. This interaction plays a crucial role in determining the adaptation to the 1 hour time zone shift imposed by the transition to or from DST. In global discussions about DST, there is a prevailing assumption that individuals easily adjust to DST transitions despite a few studies indicating that the human circadian system requires several days to fully adjust to a DST transition. Our study highlights that evening light exposure changes can be the main driving force for re-entrainment, with chronobiological models predicting that people with longer intrinsic period (i.e. later chronotype) entrain more slowly to transitions to or from DST as compared to people with a shorter intrinsic period (earlier chronotype). Moreover, the model forecasts large inter-individual differences in the adaptation speed, in particular during the spring transition. The predictions derived from our model offer circadian biology-based recommendations for light exposure strategies that facilitate a more rapid adaptation to DST-related transitions or travel across a single time zone. As such, our study contributes valuable insights to the ongoing discourse on DST and its implications for human circadian rhythms.


Subject(s)
Circadian Rhythm , Photoperiod , Humans , Circadian Rhythm/physiology , Light , Sleep/physiology , Models, Theoretical , Adaptation, Physiological , Biological Clocks/physiology , Circadian Clocks/physiology , Models, Biological
2.
IEEE Trans Biomed Eng ; 68(4): 1305-1316, 2021 04.
Article in English | MEDLINE | ID: mdl-32970591

ABSTRACT

OBJECTIVE: In the near future, real-time estimation of peoples unique, precise circadian clock state has the potential to improve the efficacy of medical treatments and improve human performance on a broad scale. Human-centric lighting can bring circadian-rhythm support using biodynamic lighting solutions that sync light with the time of day. We investigate a method to improve the tracking of individual's circadian processes. METHODS: In literature, the human circadian physiology has been mathematically modeled using ordinary differential equations, the state of which can be tracked via the signal processing concept of a Particle Filter. We show that substantial improvements can be made if the estimator not only tracks state variables, such as the phase and amplitude of the circadian pacemaker, but also fits specific model parameters to the individual. In particular, we optimize model parameter τx, which reflects the intrinsic period of the circadian pacemaker ( τ). We show that both state and model parameters can be estimated based on minimally-invasive light exposure measurements and sleep-wake state observations. We also quantify the effect of inaccuracies in sensing. RESULTS: We demonstrate improved performance by estimating τx for every individual, both with artificially created and human subject data. Prediction accuracy improves with every newly available observation. The estimated τx-s correlate well with the subjects' chronotypes, in a similar way as τ correlates. CONCLUSION: Our results show that individualizing the estimation of model parameters can improve circadian state estimation accuracy. SIGNIFICANCE: These findings underscore the potential improvements in personalized models over one-size fits all approaches.


Subject(s)
Body Temperature , Circadian Rhythm , Humans , Lighting , Sleep
3.
Sensors (Basel) ; 20(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824032

ABSTRACT

In modern society, the average person spends more than 90% of their time indoors. However, despite the growing scientific understanding of the impact of light on biological mechanisms, the existing light in the built environment is designed predominantly to meet visual performance requirements only. Lighting can also be exploited as a means to improve occupant health and well-being through the circadian functions that regulate sleep, mood, and alertness. The benefits of well-lit spaces map across other regularly occupied building types, such as residences and schools, as well as patient rooms in healthcare and assisted-living facilities. Presently, Human Centric Lighting is being offered based on generic insights on population average experiences. In this paper, we suggest a personalized bio-adaptive office lighting system, controlled to emit a lighting recipe tailored to the individual employee. We introduce a new mathematical optimization for lighting schedules that align the 24-h circadian cycle. Our algorithm estimates and optimizes parameters in experimentally validated models of the human circadian pacemaker. Moreover, it constrains deviations from the light levels desired and needed to perform daily activities. We further translate these into general principles for circadian lighting. We use experimentally validated models of the human circadian pacemaker to introduce a new algorithm to mathematically optimize lighting schedules to achieve circadian alignment to the 24-h cycle, with constrained deviations from the light levels desired for daily activities. Our suggested optimization algorithm was able to translate our findings into general principles for circadian lighting. In particular, our simulation results reveal: (1) how energy constrains drive the shape of optimal lighting profiles by dimming the light levels in the time window that light is less biologically effective; (2) how inter-individual variations in the characteristic internal duration of the day shift the timing of optimal lighting exposure; (3) how user habits and, in particular, late-evening light exposure result in differentiation in late afternoon office lighting.


Subject(s)
Circadian Rhythm , Lighting , Sleep , Workplace , Affect , Attention , Humans
4.
Sensors (Basel) ; 19(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818804

ABSTRACT

Smart buildings with connected lighting and sensors are likely to become one of the first large-scale applications of the Internet of Things (IoT). However, as the number of interconnected IoT devices is expected to rise exponentially, the amount of collected data will be enormous but highly redundant. Devices will be required to pre-process data locally or at least in their vicinity. Thus, local data fusion, subject to constraint communications will become necessary. In that sense, distributed architectures will become increasingly unavoidable. Anticipating this trend, this paper addresses the problem of presence detection in a building as a distributed sensing of a hidden Markov model (DS-HMM) with limitations on the communication. The key idea in our work is the use of a posteriori probabilities or likelihood ratios (LR) as an appropriate "interface" between heterogeneous sensors with different error profiles. We propose an efficient transmission policy, jointly with a fusion algorithm, to merge data from various HMMs running separately on all sensor nodes but with all the models observing the same Markovian process. To test the feasibility of our DS-HMM concept, a simple proof-of-concept prototype was used in a typical office environment. The experimental results show full functionality and validate the benefits. Our proposed scheme achieved high accuracy while reducing the communication requirements. The concept of DS-HMM and a posteriori probabilities as an interface is suitable for many other applications for distributed information fusion in wireless sensor networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...