Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640251

ABSTRACT

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Subject(s)
Neoplasms , Sphingosine , T-Lymphocytes, Regulatory , Programmed Cell Death 1 Receptor/metabolism , Serine/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Tumor Microenvironment
2.
Genome Biol ; 24(1): 267, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001542

ABSTRACT

BACKGROUND: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS: This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.


Subject(s)
Neoplasms , RNA Editing , Humans , Animals , Mice , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mutation , Neoplasms/pathology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , DNA/metabolism
3.
Elife ; 102021 03 30.
Article in English | MEDLINE | ID: mdl-33783358

ABSTRACT

Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' variant surface glycoprotein (VSG) enables them to evade adaptive immunity via antigenic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2 (cyclin F-box protein 2), an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stability, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonucleoprotein particle, and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.


Subject(s)
Proteome/chemistry , Protozoan Proteins/chemistry , RNA Stability , RNA, Messenger/chemistry , Trypanosoma brucei brucei/chemistry , Variant Surface Glycoproteins, Trypanosoma/chemistry
4.
Cell Host Microbe ; 28(1): 79-88.e4, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32416060

ABSTRACT

Trypanosomiasis is a devastating neglected tropical disease affecting livestock and humans. Humans are susceptible to two Trypanosoma brucei subspecies but protected from other trypanosomes by circulating high-density lipoprotein (HDL) complexes called trypanosome lytic factors (TLFs) 1 and 2. TLFs contain apolipoprotein L-1 contributing to lysis and haptoglobin-related protein (HPR), which can function as a ligand for a parasite receptor. TLF2 also uniquely contains non-covalently associated immunoglobin M (IgM) antibodies, the role and origin of which remain unclear. Here, we show that these TLF2-associated IgMs interact with both HPR and alternate trypanosome surface proteins, including variant surface glycoprotein, likely facilitating complex biogenesis and TLF uptake into parasites. TLF2-IgMs are germline antibodies that, while present at basal concentrations in healthy individuals, are elicited by trypanosome infection in both murine models and human sleeping sickness patients. These data suggest that poly- and self-reactive germline antibodies such as TLF2-associated IgMs play a role in antimicrobial immunity.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Neoplasm/immunology , Apolipoprotein L1/immunology , Haptoglobins/immunology , Immunoglobulin M/immunology , Lipoproteins, HDL/immunology , Trypanosomiasis, African/immunology , Adolescent , Adult , Aged , Animals , Cell Line , Child , Female , Germ Cells/immunology , Host-Parasite Interactions , Humans , Male , Membrane Glycoproteins/immunology , Mice , Mice, Knockout , Middle Aged , Models, Animal , Parasites , Trypanosoma brucei brucei , Young Adult
6.
Cell Rep ; 30(6): 1690-1701.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049003

ABSTRACT

While interferon (IFN) responses are critical for mammalian antiviral defense, induction of antiviral RNA interference (RNAi) is evident. To date, individual functions of the mammalian RNAi and micro RNA (miRNA) effector proteins Argonautes 1-4 (AGO1-AGO4) during virus infection remain undetermined. AGO2 was recently implicated in mammalian antiviral defense, so we examined antiviral activity of AGO1, AGO3, or AGO4 in IFN-competent immune cells. Only AGO4-deficient cells are hyper-susceptible to virus infection. AGO4 antiviral function is both IFN dependent and IFN independent, since AGO4 promotes IFN but also maintains antiviral capacity following prevention of IFN signaling or production. We identified AGO-loaded virus-derived short interfering RNAs (vsiRNAs), a molecular marker of antiviral RNAi, in macrophages infected with influenza or influenza lacking the IFN and RNAi suppressor NS1, which are uniquely diminished without AGO4. Importantly, AGO4-deficient influenza-infected mice have significantly higher burden and viral titers in vivo. Together, our data assign an essential role for AGO4 in mammalian antiviral defense.


Subject(s)
Antiviral Agents/therapeutic use , Argonaute Proteins/therapeutic use , RNA Interference/immunology , Animals , Antiviral Agents/pharmacology , Argonaute Proteins/pharmacology , Mice
7.
Emerg Top Life Sci ; 1(6): 585-592, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-30271884

ABSTRACT

Many pathogens evade host immunity by periodically changing the proteins they express on their surface - a phenomenon termed antigenic variation. An extreme form of antigenic variation, based around switching the composition of a Variant Surface Glycoprotein (VSG) coat, is exhibited by the African trypanosome Trypanosoma brucei, which causes human disease. The molecular details of VSG switching in T. brucei have been extensively studied over the last three decades, revealing in increasing detail the machinery and mechanisms by which VSG expression is controlled and altered. However, several key components of the models of T. brucei antigenic variation that have emerged have been challenged through recent discoveries. These discoveries include new appreciation of the importance of gene mosaics in generating huge levels of new VSG variants, the contributions of parasite development and body compartmentation in the host to the infection dynamics and, finally, potential differences in the strategies of antigenic variation and host infection used by the crucial livestock trypanosomes T. congolense and T. vivax. This review will discuss all these observations, which raise questions regarding how secure the existing models of trypanosome antigenic variation are. In addition, we will discuss the importance of continued mathematical modelling to understand the purpose of this widespread immune survival process.

SELECTION OF CITATIONS
SEARCH DETAIL
...