Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Phys Chem B ; 128(12): 3016-3026, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38502011

ABSTRACT

A coarse-grained modeling approach is employed to probe the effect of nanoparticles and their wettability on the stability of the interface between two immiscible fluids. In this study, pure oil (dodecane) and water are placed side by side in a nanochannel, forming a meniscus. Homogeneous hydrophilic nanoparticles, Janus particles, and homogeneous hydrophobic nanoparticles are placed at the oil-water interface, and their dynamics are studied as they rearrange at the oil-water interface. The results show that when the water is set in motion, two instabilities occur: the formation of fingers and the detachment of water from the channel wall. It is observed that the formation of fingers is affected by the wettability of the nanoparticles. The second instability may lead to the formation of a drop that propagates through the channel. However, it is found that the wetting properties of the nanoparticles do not affect the critical flow rate for the detachment of the water from the wall. Therefore, detachment occurs at the same three-phase contact angle regardless of the nanoparticle wetting properties. These findings can be important for industrial applications such as enhanced oil recovery, separation technologies, and microfluidic and nanofluidic technologies.

2.
Sci Rep ; 14(1): 1916, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253573

ABSTRACT

The fate and aggregation of nanoparticles (NPs) in the subsurface are important due to potentially harmful impacts on the environment and human health. This study aims to investigate the effects of flow velocity, particle size, and particle concentration on the aggregation rate of NPs in a diffusion-limited regime and build an equation to predict the aggregation rate when NPs move in the pore space between randomly packed spheres (including mono-disperse, bi-disperse, and tri-disperse spheres). The flow of 0.2 M potassium chloride (KCl) through the random sphere packings was simulated by the lattice Boltzmann method (LBM). The movement and aggregation of cerium oxide (CeO2) particles were then examined by using a Lagrangian particle tracking method based on a force balance approach. This method relied on Newton's second law of motion and took the interaction forces among particles into account. The aggregation rate of NPs was found to depend linearly on time, and the slope of the line was a power function of the particle concentration, the Reynolds (Re) and Schmidt (Sc) numbers. The exponent for the Sc number was triple that of the Re number, which was evidence that the random movement of NPs has a much stronger effect on the rate of diffusion-controlled aggregation than the convection.

3.
J Colloid Interface Sci ; 650(Pt A): 381-395, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37418889

ABSTRACT

HYPOTHESIS: The main hypothesis is that the aggregation process for nanoparticles (NPs) propagating in porous media is affected by the structure of the flow field as well as by the properties of the primary NPs. If this were true, then the aggregation could be predicted and controlled. However, to obtain reliable results from computations, one needs to account for the interactions between the NPs as well as the details of the fluid velocity, thus making advances over prior efforts that either ignored the aggregation of NPs, or used probabilistic methods to model aggregation. EXPERIMENTS: Computational experiments were conducted using the lattice Boltzmann method in conjunction with Lagrangian particle tracking (LPT). The LPT accounted for the physicochemical interaction forces among NPs. Computationally obtained aggregation kinetics and fractal dimensions of Cerium oxide (CeO2) particles, suspended in potassium chloride (KCl) solutions with different concentration, were verified against experimental results. The model was then employed to investigate the effects of ionic strength, fluid velocity, and particle size on the aggregation kinetics and the aggregate morphology, as NPs propagated in the pore space between randomly packed spheres. FINDINGS: The aim of this study was to develop a computational model to simulate the aggregation of NPs and obtain the morphology of aggregates in confined geometries, based on the physics of NP interactions and the flow field. The most important factor that impacted both the aggregation process and the aggregate structure was found to be the concentration of the electrolyte. The pore velocity influenced the aggregation kinetics and the NP fractal dimension, especially in diffusion-limited aggregation. The primary particle size affected the diffusion-limited aggregation kinetics and the fractal dimension of reaction-limited aggregates noticeably.

4.
J Phys Chem B ; 126(33): 6314-6323, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35969639

ABSTRACT

The effects of surface-active nanoparticles and surfactants on the behavior of oil-water interfaces have implications for a variety of industrial processes related to multiphase flows including separation processes, enhanced oil recovery, and environmental remediation. In this work, the migration of an oil droplet in shear flow is investigated with the presence of surface-active molecules and nanoparticles at the oil-water interface. Pure oil (heptadecane) in water and oil with the presence of Janus nanoparticles (JPs) and/or octaethylene glycol monododecyl ether, a nonionic surfactant, were examined using coarse-grained computations. The shear flow field was created utilizing a Couette flow, where the top wall of a channel moved with a specified velocity and the bottom wall was kept stationary. The dissipative particle dynamics (DPD) method was applied. The oil drop was placed on the stationary wall, and its displacement was recorded over time. When surfactants were added at the oil-water interface, the slip of the water over the oil drop was reduced, leading to a larger displacement of the drop. Moreover, surfactant molecules tended to concentrate toward the rear side of the oil drop rather than the front as the drop moved in the flow field. The presence of only JPs on the oil-water interface resulted in slower droplet migration. In the presence of both JPs and surfactants, the effect of JPs on the oil-surfactant-water system was investigated by changing the number of JPs on the drop surface while keeping the concentration of the surfactant constant. Under the same shear rate, the droplet's migration speed increased in the presence of both surfactants and JPs compared to the case of bare oil. The JPs appeared to follow a repeated pattern of motion while residing close to the solid substrate-oil drop contact line. These findings elucidate the contribution of both surfactants and JPs on oil drop displacement for enhanced oil recovery or remediation of an oil-contaminated subsurface.


Subject(s)
Multifunctional Nanoparticles , Pulmonary Surfactants , Excipients , Surface-Active Agents , Water
5.
PLoS One ; 17(8): e0273312, 2022.
Article in English | MEDLINE | ID: mdl-36037218

ABSTRACT

The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein. Damage to the vWF molecule can cause disease, most often related to hemostasis. The hydrodynamic shear stresses along the trajectories of the particles were calculated and the changes in the distribution of stresses were determined for proteins released in different locations in the flow field and as a function of exposure time. The stress distributions indicated that even when the average applied stress was within a safe operating regime, the proteins spent part of their trajectories in flow areas of damaging stress. Further examination showed that the history of the distribution of stresses applied on the vWF molecules, rather than the average, should be used to evaluate hydrodynamically-induced damage.


Subject(s)
Heart-Assist Devices , von Willebrand Factor , Hemostasis , Hydrodynamics , Stress, Mechanical , von Willebrand Factor/metabolism
6.
Langmuir ; 38(23): 7179-7189, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35640061

ABSTRACT

The presence of contamination in sodium dodecyl sulfate (SDS) solutions in the form of dodecanol (LOH) is known to drastically affect the resulting interfacial properties such as surface tension (SFT) and rheology. Dodecanol molecules, which are the product of SDS hydrolysis and are inherently present in SDS solutions, have higher surface activity compared to SDS because they are less soluble in water. A characteristic dip in the SFT isotherm is an indicator of the dodecanol contamination in the sample. The presence of an electrolyte in the solution impacts the surface activity of SDS and its critical micelle concentration, and could yield SFT isotherms that closely match those obtained for pure SDS samples. The interpretation of the isotherms in such cases could thus lead to misinterpretation of the surface purity. In this work, we have examined the SFT isotherms for SDS solutions in both the absence and presence of electrolyte. We have fitted the isotherms to three different thermodynamic adsorption models to estimate the amount of dodecanol present in the sample. We have applied the estimated values for the LOH content in a two-component rheological model to predict the viscoelasticity of such surfactant-laden surfaces. We have compared these results with the experimentally measured interfacial rheological properties. Our findings demonstrate that the presence of impurities can be captured under dynamic expansion and contractions, even for solutions containing background electrolyte.

7.
Polymers (Basel) ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35160531

ABSTRACT

Coarse-grained modeling methods allow simulations at larger scales than molecular dynamics, making it feasible to simulate multifluid systems. It is, however, critical to use model parameters that represent the fluid properties with fidelity under both equilibrium and dynamic conditions. In this work, dissipative particle dynamics (DPD) methods were used to simulate the flow of oil and water in a narrow slit under Poiseuille and Couette flow conditions. Large surfactant molecules were also included in the computations. A systematic methodology is presented to determine the DPD parameters necessary for ensuring that the boundary conditions were obeyed, that the oil and water viscosities were represented correctly, and that the velocity profile for the multifluid system agreed with the theoretical expectations. Surfactant molecules were introduced at the oil-water interface (sodium dodecylsulfate and octaethylene glycol monododecyl ether) to determine the effects of surface-active molecules on the two-phase flow. A critical shear rate was found for Poiseuille flow, beyond which the surfactants desorbed to form the interface forming micelles and destabilize the interface, and the surfactant-covered interface remained stable under Couette flow even at high shear rates.

8.
Sci Rep ; 12(1): 171, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997036

ABSTRACT

The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille-Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime.


Subject(s)
Hemorheology , Models, Cardiovascular , von Willebrand Factor/metabolism , Blood Flow Velocity , Computer Simulation , Numerical Analysis, Computer-Assisted , Protein Conformation , Regional Blood Flow , Stress, Mechanical , Structure-Activity Relationship
9.
J Colloid Interface Sci ; 609: 158-169, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34894550

ABSTRACT

HYPOTHESIS: Janus particles (JPs) and surfactants express different behaviors at the oil-water interface under compression. When both are present at the interface, their synergies result in a different collapse mechanism than when present individually depending on the concentration of the JPs and surfactants. EXPERIMENTS: Coarse-grained modeling methods were used to probe the synergies between Janus nanoparticles and nonionic surfactants on the stability of an oil-water interface under compression. When both JPs and surfactants were present, the interface was covered at 0-55% area by JPs and contained surfactants at 0-40% of the interfacial surfactant concentration corresponding to the critical micelle concentration (CMC). FINDINGS: Compression of the interface with only surfactants resulted in the expulsion of surfactant molecules to the water phase once the interfacial concentration of surfactant molecules reached the CMC value. Compression of a Janus particle-laden interface past the closed-packing point led to a buckled interface, so that the total interfacial area remained constant upon further compression. When both surfactants and JPs were present on the interface, JPs still caused buckling, which helped retain the surfactant molecules on the interface. The interface exhibited a higher level of deformation in presence of surfactants. When the surfactant concentration was high, under compression, the surfactants partitioned into the water phase, but the buckling of the interface persisted.


Subject(s)
Multifunctional Nanoparticles , Surface-Active Agents , Micelles , Pressure , Water
10.
Small ; 17(46): e2102459, 2021 11.
Article in English | MEDLINE | ID: mdl-34590405

ABSTRACT

Conventional approaches (e.g., pyrolysis) for managing waste polymer foams typically require highly technical skills and consume large amounts of energy resources. This paper presents an ultrafacile, cost-effective, and highly efficient alternative method for recycling waste packaging and cleaning foam (e.g., polymelamine-formaldehyde foam). The designed solar absorber, a polypyrrole-coated melamine foam (PMF), features a highly porous structure, excellent mechanical strength, low thermal conductivity, and rapid water transport capacity. These exceptional properties render the PMF suitable for multiple applications, including energy-efficient solar-powered water purification, ethanol distillation, and oil absorption. In water purification, the PMF yields a solar-thermal conversion efficiency as high as 87.7%, stability that is maintained for more than 35 operation cycles, and antifouling capabilities (when purifying different water types). In solar distillation, the PMF achieves a concentration increase up to 75 vol% when distilling a 10 vol% ethanol solution. In oil absorption, the PMF offers an oil-absorption capacity of ≈70 g g-1 with only a 7% loss in capacity after 100 absorbing-squeezing cycles. Thus, systems combining solar energy with various waste foams are highly promising as durable, renewable, and portable systems for water purification, organic distillation, and oil absorption, especially in remote regions or emergency situations.


Subject(s)
Petroleum Pollution , Water Purification , Distillation , Polymers , Pyrroles , Solid Waste
11.
Cells ; 10(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34572002

ABSTRACT

Fluid forces and their effects on cells have been researched for quite some time, especially in the realm of biology and medicine. Shear forces have been the primary emphasis, often attributed as being the main source of cell deformation/damage in devices like prosthetic heart valves and artificial organs. Less well understood and studied are extensional stresses which are often found in such devices, in bioreactors, and in normal blood circulation. Several microfluidic channels utilizing hyperbolic, abrupt, or tapered constrictions and cross-flow geometries, have been used to isolate the effects of extensional flow. Under such flow cell deformations, erythrocytes, leukocytes, and a variety of other cell types have been examined. Results suggest that extensional stresses cause larger deformation than shear stresses of the same magnitude. This has further implications in assessing cell injury from mechanical forces in artificial organs and bioreactors. The cells' greater sensitivity to extensional stress has found utility in mechanophenotyping devices, which have been successfully used to identify pathologies that affect cell deformability. Further application outside of biology includes disrupting cells for increased food product stability and harvesting macromolecules for biofuel. The effects of extensional stresses on cells remains an area meriting further study.


Subject(s)
Erythrocytes/physiology , Animals , Humans , Leukocytes/physiology , Microfluidics/methods , Stress, Mechanical
12.
Biomech Model Mechanobiol ; 20(5): 1709-1722, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34106362

ABSTRACT

Hemolysis in medical devices and implants has been a primary concern over the past fifty years. Turbulent flow in particular can cause cell trauma and hemolysis in such devices. In this work, the effects of turbulence on red blood cell (RBC) damage are examined by simulating the flow field through a centrifugal blood pump that has been identified as a case study through the critical path initiative of the US Food and Drug Administration (FDA). In this study, a new model was employed to predict hemolysis in the turbulent flow environment in the pump selected for the FDA critical path initiative. The operating conditions for a centrifugal blood pump were specified by the FDA for rotational speeds of 2500 and 3500 rpm. The model is based on the analysis of the smaller eddies within the turbulent flow field, since it is assumed that turbulent flow eddies with sizes comparable to the dimensions of the RBCs lead to cell trauma. The Kolmogorov length scale of the velocity field is used to identify such small eddies. Using model parameters obtained in prior work through comparisons to capillary and jet flow, it is found that hemolysis for the 2500-rpm pump was predicted well, while hemolysis for the 3500-rpm pump was overpredicted. Results indicate refinement of the model and empirical constants with better experimental data is needed.


Subject(s)
Critical Pathways , Erythrocytes/physiology , Heart-Assist Devices , Hemolysis , Stress, Mechanical , Blood Flow Velocity , Computer Simulation , Equipment Design , Heart-Assist Devices/standards , Humans , Models, Cardiovascular , Models, Theoretical , Prosthesis Design , United States , United States Food and Drug Administration
13.
J Artif Organs ; 24(2): 135-145, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33420875

ABSTRACT

Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles. Red blood cells isolated from blood of healthy volunteers were exposed to high shear stress in a microfluidic channel to mimic mechanical trauma similar to that occurring in ventricular assist devices. Utilizing flow cytometry techniques, both an increase of shear rate and exposure time showed higher concentrations of red blood cell microparticles. Controlled shear rate exposure shows that red blood cell microparticle concentration may be indicative of sub-hemolytic damage to red blood cells. In addition, properties of these red blood cell microparticles produced by shear suggest that mechanical trauma may underlie some complications for cardiovascular patients.


Subject(s)
Cell-Derived Microparticles , Erythrocytes , Heart-Assist Devices/adverse effects , Stress, Mechanical , Hemolysis , Humans
14.
Int J Numer Method Biomed Eng ; 36(1): e3275, 2020 01.
Article in English | MEDLINE | ID: mdl-31680480

ABSTRACT

Photothermal therapy using near-infrared radiation and local heating agents can induce selective tumor ablation with limited harm to the surrounding normal tissue. Graphene sheets are promising local heating agents because of their strong absorbance of near-infrared radiation. Experimental studies have been conducted to study the heating effect of graphene in photothermal therapy, yet few efforts have been devoted to the quantitative understanding of energy conversion and transport in such systems. Herein, a computational study of cancer photothermal therapy using near-infrared radiation and graphene is presented using a Monte Carlo approach. A three-dimensional model was built with a cancer cell inside a cube of healthy tissue. Functionalized graphene nanosheets were randomly distributed on the surface of the cancer cell. The effects of the concentration and morphology of the graphene nanosheets on the thermal behavior of the system were quantitatively investigated. The interfacial thermal resistance around the graphene sheets, which affects the transfer of heat in the nanoscale, was also varied to probe its effect on the temperature increase of the cancer cell and the healthy tissue. The results of this study could guide researchers to optimize photothermal therapy with graphene, while the modeling approach has the potential to be applied for investigating alternative treatment plans.


Subject(s)
Graphite/chemistry , Hyperthermia, Induced , Infrared Rays , Models, Biological , Nanoparticles/chemistry , Neoplasms/therapy , Phototherapy , Cell Line, Tumor , Humans , Temperature
15.
J Colloid Interface Sci ; 553: 50-58, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31185383

ABSTRACT

HYPOTHESIS: Nanoparticles (NPs) can reduce the interfacial tension (IFT) of the oil-water system containing surfactants by reducing the interfacial area available to surfactants. The ability to reduce the IFT when surfactants are present in addition to NPs depends on the localization of the NPs on the interface, which is related to the nature of the NPs and the interaction between NPs and surfactant molecules. EXPERIMENTS: Systems of NPs and surfactants on the oil-water interface were studied using dissipative particle dynamics (DPD). Heterogeneous NPs with different properties and interface coverage were placed on the interface with various surfactant concentrations. The IFT and the surfactant density profiles across the interface were analyzed. FINDINGS: At constant surfactant concentration, adding NPs reduced the IFT; while with the absence of surfactant, NPs expressed no effect on the IFT. Among different types of heterogeneous NPs, the most effective were those that maximized their footprint on the interface, reducing thus the interfacial area available to surfactants. The interactions of the NPs with the surfactant molecules determined exactly which pattern of heterogeneity was most favorable. Based on these results, suggestions for designing NPs for maximum synergistic effects with surfactants were formulated.

16.
J Chem Phys ; 148(20): 204704, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29865808

ABSTRACT

In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.

17.
ACS Appl Mater Interfaces ; 10(17): 14614-14621, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29638106

ABSTRACT

Graphene has been combined with molybdenum disulfide (MoS2) to ameliorate the poor cycling stability and rate performance of MoS2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS2. Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.

18.
Nanomaterials (Basel) ; 7(12)2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29194383

ABSTRACT

Graphene aerogels (GAs) have attracted extensive interest in diverse fields, owing to their ultrahigh surface area, low density and decent electrical conductivity. However, the undesirable thermal conductivity of GAs may limit their applications in energy storage devices. Here, we report a facile hydrothermal method to modulate both the electrical and thermal properties of GAs by including bulk molybdenum disulfide (MoS2). It was found that MoS2 can help to reduce the size of graphene sheets and improve their dispersion, leading to the uniform porous micro-structure of GAs. The electrical measurement showed that the electrical conductivity of GAs could be decreased by 87% by adding 0.132 vol % of MoS2. On the contrary, the thermal conductivity of GAs could be increased by ~51% by including 0.2 vol % of MoS2. The quantitative investigation demonstrated that the effective medium theories (EMTs) could be applied to predict the thermal conductivity of composite GAs. Our findings indicated that the electrical and thermal properties of GAs can be tuned for the applications in various fields.

19.
Artif Organs ; 41(10): E129-E140, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28168706

ABSTRACT

The design of blood pumps for use in ventricular assist devices, which provide life-saving circulatory support in patients with heart failure, require remarkable precision and attention to detail to replicate the functionality of the native heart. The United States Food and Drug Administration (FDA) initiated a Critical Path Initiative to standardize and facilitate the use of computational fluid dynamics in the study and development of these devices. As a part of the study, a simplified centrifugal blood pump model generated by computer-aided design was released to universities and laboratories nationwide. The effects of changes in fluid rheology due to temperature, hematocrit, and turbulent flow on key metrics of the FDA pump were examined in depth using results from a finite volume-based commercial computational fluid dynamics code. Differences in blood damage indices obtained using Eulerian and Lagrangian formulations were considered. These results are presented and discussed awaiting future validation using experimental results, which will be released by the FDA at a future date.


Subject(s)
Heart-Assist Devices/adverse effects , Hemolysis , Computer Simulation , Critical Pathways , Equipment Design , Erythrocytes/pathology , Hematocrit , Humans , Hydrodynamics , Models, Biological , Rheology , Temperature , United States , United States Food and Drug Administration
20.
J Biomech Eng ; 139(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27760246

ABSTRACT

In this work, contributing factors for red blood cell (RBC) damage in turbulence are investigated by simulating jet flow experiments. Results show that dissipative eddies comparable or smaller in size to the red blood cells cause hemolysis and that hemolysis corresponds to the number and, more importantly, the surface area of eddies that are associated with Kolmogorov length scale (KLS) smaller than about 10 µm. The size distribution of Kolmogorov scale eddies is used to define a turbulent flow extensive property with eddies serving as a means to assess the turbulence effectiveness in damaging cells, and a new hemolysis model is proposed. This empirical model is in agreement with hemolysis results for well-defined systems that exhibit different exposure times and flow conditions, in Couette flow viscometer, capillary tube, and jet flow experiments.


Subject(s)
Blood Flow Velocity/physiology , Blood Viscosity/physiology , Equipment and Supplies , Erythrocyte Membrane/physiology , Hemolysis/physiology , Models, Biological , Blood Pressure/physiology , Computer Simulation , Elastic Modulus/physiology , Humans , Shear Strength/physiology , Stress, Mechanical , Tensile Strength/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...