Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047711

ABSTRACT

The molecular dynamics of 1-butyl-3-methyl imidazolium tricyanomethanide ionic liquid [BMIM]+[TCM]- confined in SBA-15 mesoporous silica were examined using 1H NMR spin-lattice (T1) relaxation and diffusion measurements. An extensive temperature range (100 K-400 K) was considered in order to study both the liquid and glassy states. The hydrogen dynamics in the two states and the self-diffusion coefficients of the cation [BMIM]+ above the glass transition temperature were extracted from the experimental data. The results were then compared to the corresponding bulk substance. The effects of confinement on the dynamic properties of the ionic liquid clearly manifest themselves in both temperature regimes. In the high-temperature liquid state, the mobility of the confined cations reduces significantly compared to the bulk; interestingly, confinement drives the ionic liquid to the glassy state at a higher temperature Tg than the bulk ionic liquid, whereas an unusual T1 temperature dependence is observed in the high-temperature regime, assigned to the interaction of the ionic liquid with the silica-OH species.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Silicon Dioxide , Cations
2.
Int J Mol Sci ; 23(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36430907

ABSTRACT

Confined liquids are model systems for the study of the metastable supercooled state, especially for bulk water, in which the onset of crystallization below 230 K hinders the application of experimental techniques. Nevertheless, in addition to suppressing crystallization, confinement at the nanoscale drastically alters the properties of water. Evidently, the behavior of confined water depends critically on the nature of the confining environment and the interactions of confined water molecules with the confining matrix. A comparative study of the dynamics of water under hydrophobic and hydrophilic confinement could therefore help to clarify the underlying interactions. As we demonstrate in this work using a few representative results from the relevant literature, the accurate assessment of the translational mobility of water molecules, especially in the supercooled state, can unmistakably distinguish between the hydrophilic and hydrophobic nature of the confining environments. Among the numerous experimental methods currently available, we selected nuclear magnetic resonance (NMR) in a field gradient, which directly measures the macroscopic translational self-diffusion coefficient, and quasi-elastic neutron scattering (QENS), which can determine the microscopic translational dynamics of the water molecules. Dielectric relaxation, which probes the re-orientational degrees of freedom, are also discussed.


Subject(s)
Nanotubes, Carbon , Water , Water/chemistry , Porosity , Silicon Dioxide/chemistry , Hydrophobic and Hydrophilic Interactions
3.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212832

ABSTRACT

Titanium dioxide (TiO2) is an excellent photocatalytic material that imparts biocidal, self-cleaning and smog-abating functionalities when added to cement-based materials. The presence of TiO2 influences the hydration process of cement and the development of its internal structure. In this article, the hydration process and development of a pore network of cement pastes containing different ratios of TiO2 were studied using two noninvasive techniques (ultrasonic and NMR). Ultrasonic results show that the addition of TiO2 enhances the mechanical properties of cement paste during early-age hydration, while an opposite behavior is observed at later hydration stages. Calorimetry and NMR spin-lattice relaxation time T1 results indicated an enhancement of the early hydration reaction. Two pore size distributions were identified to evolve separately from each other during hydration: small gel pores exhibiting short T1 values and large capillary pores with long T1 values. During early hydration times, TiO2 is shown to accelerate the formation of cement gel and reduce capillary porosity. At late hydration times, TiO2 appears to hamper hydration, presumably by hindering the transfer of water molecules to access unhydrated cement grains. The percolation thresholds were calculated from both NMR and ultrasonic data with a good agreement between both results.


Subject(s)
Construction Materials , Magnetic Resonance Spectroscopy , Titanium/chemistry , Ultrasonics , Water/chemistry , Calorimetry , Diffusion , Thermogravimetry
4.
J Nanosci Nanotechnol ; 15(1): 205-10, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328331

ABSTRACT

Ultra-small dextran coated maghemite nanoparticles are synthesized via a low temperature modified co-precipitation method. A monoethylene glycol/water solution of 1:1 molar ratios and a fixed apparatus is used at a constant temperature of 5-10 degrees C. The growth of nanoparticles is prohibited due to low temperature synthesis and differs from usual thermal decomposition methods via Ostwald ripening. Strict temperature control and reaction timing of less than 20 minutes are essential to maintain narrow distribution in particle size. These nanoparticles are water-dispersible and biocompatible by capping with polyethylene glycol ligands. The aqueous suspensions are tested for cytotoxic activity on normal human skin fibroblasts. There is no reduction of the cells' viability at any concentration tested, the highest being 1% v/v of the suspension in culture medium, corresponding to the highest concentrations to be administered in vivo. Initial comparison with a T1 MRI contrast agent in sale shows that maghemite nanoparticles exhibit high r1 and r2 relaxivities in MRI tomography and strong contrast in computed tomography, demonstrating that these nanoparticles can be efficient T1, T2 and CT contrast agents.


Subject(s)
Contrast Media/chemistry , Dextrans/chemistry , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Tomography, X-Ray Computed/methods , Cell Line , Cell Survival/drug effects , Chemical Precipitation , Cold Temperature , Contrast Media/toxicity , Dextrans/toxicity , Humans , Magnetite Nanoparticles/toxicity , Phantoms, Imaging
5.
Mol Med ; 16(1-2): 1-9, 2010.
Article in English | MEDLINE | ID: mdl-19809523

ABSTRACT

Glioblastomas, the most frequent primary brain tumors in adults, are characterized by a highly aggressive, inflammatory and angiogenic phenotype. Methylation of CpG islands in cancer-related genes may serve as an epigenetic biomarker for glioblastoma diagnosis and prognosis. The aim of this study was to analyze the methylation status of four critical tumor-associated genes (MGMT, RARbeta, RASSF1A, CDH13), and investigate possible links with inflammatory (interleukin [IL]-6, IL-8) and angiogenic mediators (vascular endothelial growth factor [VEGF], cyclooxygenase [COX]-2) and clinical outcome in 23 glioma samples (6 grade II astrocytomas, 17 grade IV glioblastomas). RARbeta and MGMT genes were more frequently methylated in 70.58% and 58.8% of glioblastomas, respectively. RASSF1A and CDH13 displayed a similar methylation frequency (23.52%) in glioblastomas. No gene methylation was observed in grade II astrocytomas. Tumor grade correlated positively with MGMT and RARbeta methylation (P = 0.005 and P = 0.019, respectively) and the extent of necrosis (P = 0.001 and P = 0.003). Interestingly, the marker of chronic inflammation, IL-6, was positively associated with methylation of MGMT (P = 0.004), RARbeta (P = 0.002), and RASSF1A (P = 0.0081) as well as the total number of methylated genes (P < 0.0001), indicating the important role of IL-6 in maintaining promoter methylation of these genes. VEGF expression correlated positively with MGMT and RARbeta methylation although these relationships were of marginal significance (P = 0.0679 and P = 0.0757). Kaplan-Meier univariate survival analysis indicated an unfavorable survival period in patients with MGMT methylation compared with those without methylation (P = 0.0474). Our study highlights the implication of MGMT and RARbeta methylation in the aggressive phenotype of primary glioblastomas. The association of MGMT methylation with clinical outcome indicates its potential prognostic value.


Subject(s)
Brain Neoplasms/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/genetics , Receptors, Retinoic Acid/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Angiogenic Proteins/metabolism , Brain Neoplasms/metabolism , Cadherins/genetics , Cadherins/metabolism , DNA Modification Methylases/metabolism , DNA Repair Enzymes/metabolism , Female , Glioblastoma/metabolism , Humans , Immunohistochemistry , Inflammation Mediators/metabolism , Interleukins/metabolism , Male , Middle Aged , Prognosis , Promoter Regions, Genetic , Receptors, Retinoic Acid/metabolism , Tumor Suppressor Proteins/metabolism
6.
Arch Oral Biol ; 54(11): 1035-45, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19775676

ABSTRACT

Bone remodeling is orchestrated by cells of the osteoblast lineage and involves an intricate network of cell-cell and cell-matrix interactions. This dynamic process engages systemic hormones, locally produced cytokines and growth factors, as well as the mechanical environment of the cells. In growing subjects, the mandibular condyle consists of both articular and growth components and the presence of progenitor cells is verified by their anabolic responses to growth hormones. The pathways of chondrocyte and osteoblast differentiation during endochondral bone formation are interconnected and controlled by key transcription factors. The present study was undertaken to explore the possibility and the extent by which the mechano-transduction events in chondrocytes are 'sensed' in the subchondral bony area under altered functional loading. To this end, the involvement of the JNK/ERK-AP-1/Runx2 signaling axe was investigated by immunohistochemistry in temporomandibular joints of young rats subjected to different functional mastication loads. Our results showed that mechanical load triggers differentiation phenomena through the induction of master tissue regulators, namely the expression and/or activation of the JNK-c-Jun signaling pathway components and c-Fos in subchondral osteoblasts, as well as the activation of ERK/MAPK and the cellular expression of the transcription factor Runx2 in subchondral osteoblasts.


Subject(s)
Bite Force , Bone Remodeling/physiology , Cartilage, Articular/physiology , Mandibular Condyle/physiology , Temporomandibular Joint/physiology , Animals , Cell Differentiation , Chondrocytes/physiology , Core Binding Factor Alpha 1 Subunit/biosynthesis , Dental Stress Analysis , Female , Gene Expression Regulation, Developmental , Logistic Models , MAP Kinase Signaling System , Mastication/physiology , Osteoblasts/metabolism , Rats , Rats, Wistar , Transcription Factor AP-1/biosynthesis
7.
ACS Nano ; 2(5): 977-83, 2008 May.
Article in English | MEDLINE | ID: mdl-19206495

ABSTRACT

The influence of coating on interparticle interactions in ferrofluids has been investigated using various techniques such as Mossbauer spectroscopy, magnetometry, transmission electron microscopy, photon correlation spectroscopy, X-ray diffraction, X-ray photoelectron, and resonance micro-Raman spectroscopy. Aging and spin-glass-like behavior was investigated in frozen ferrofluids of various concentrations from dense, initial value of 40 mg of coated nanoparticles per 1 mL of water, to dilute 1:10 (4 mg/mL). The as-prepared nanoparticles, core size 7-8 nm, were subsequently coated with a gummic acid corona of 20 nm thickness, which was observed to prevent agglomeration and to delay aggregation even in dense ferrofluids. The resulting separation of magnetic cores due to the coating eliminated all magnetic interparticle interaction mechanisms, such as exchange and dipoledipole, thus ensuring no aging effects of the magnetic particle system, as manifested in particle agglomeration and precipitation.


Subject(s)
Crystallization/methods , Ferric Compounds/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Adsorption , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Solutions , Surface Properties
8.
Chemistry ; 13(27): 7600-7, 2007.
Article in English | MEDLINE | ID: mdl-17676574

ABSTRACT

Water-soluble carbon-nanohorn-tetrathiafulvalene (CNH-TTF) nanoensembles were prepared by utilizing positively charged pyrene as an assembly medium and characterized by spectroscopy and electron microscopy. Electronic interactions within the nanoensemble were probed by optical spectroscopy, indicating electron transfer between the TTF units and CNHs after light illumination.


Subject(s)
Carbon/chemistry , Electrons , Heterocyclic Compounds/chemistry , Photochemistry , Pyrenes/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Infrared
9.
Inorg Chem ; 45(5): 2317-26, 2006 Mar 06.
Article in English | MEDLINE | ID: mdl-16499398

ABSTRACT

The use of salicylaldehyde oxime (H2salox) in iron(III) carboxylate chemistry has yielded two new hexanuclear compounds [Fe6(mu3-O)2(O2CPh)10(salox)2(L)2].xMeCN.yH2O [L = MeCONH2, x = 6, y = 0 (1); L = H2O, x = 2, y = 3 (2)]. Compound 1 crystallizes in the triclinic space group P with (at 25 degrees C) a = 13.210(8) A, b = 13.87(1) A, c = 17.04(1) A, alpha = 105.79(2) degrees , beta = 96.72(2) degrees , gamma = 116.69(2) degrees , V = 2578.17(2) A(3), and Z = 1. Compound 2 crystallizes in the monoclinic space group C2/c with (at 25 degrees C) a = 21.81(1) A, b = 17.93(1) A, c = 27.72(1) A, beta = 111.70(2) degrees , V = 10070(10) A(3), and Z = 4. Complexes 1 and 2 contain the [Fe6(mu3-O)2(mu2-OR)2]12+ core and can be considered as two [Fe3(mu3-O)] triangular subunits linked by two mu2-oximato O atoms of the salox2- ligands, which show the less common mu3:eta1:eta2:eta1 coordination mode. The benzoato ligands are coordinated through the usual syn,syn-mu2:eta1:eta1 mode. The terminal MeCONH2 ligand in 1 is the hydrolysis product of the acetonitrile solvent in the presence of the metal ions. Mössbauer spectra from powdered samples of 2 give rise to two well-resolved doublets with an average isomer shift consistent with that of high-spin Fe(III) ions. The two doublets, at an approximate 1:2 ratio, are characterized by different quadrupole splittings and are assigned to the nonequivalent Fe(III) ions of the cluster. Magnetic measurements of 2 in the 2-300 K temperature range reveal antiferromagnetic interactions between the Fe(III) ions, stabilizing an S = 0 ground state. NMR relaxation data have been used to investigate the energy separation between the low-lying states, and the results are in agreement with the susceptibility data.


Subject(s)
Iron Compounds/chemistry , Chemistry, Inorganic/methods , Crystallography, X-Ray , Iron Compounds/chemical synthesis , Magnetic Resonance Spectroscopy , Magnetics , Molecular Structure , Spectroscopy, Mossbauer
SELECTION OF CITATIONS
SEARCH DETAIL
...