Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(46): 28164-28173, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36398658

ABSTRACT

Perovskite-type oxhydrides such as BaTiO3-xHy exhibit mixed hydride ion and electron conduction and are an attractive class of materials for developing energy storage devices. However, the underlying mechanism of electric conductivity and its relation to the composition of the material remains unclear. Here we report detailed insights into the hydride local environment, the electronic structure and hydride conduction dynamics of barium titanium oxyhydride. We demonstrate that DFT-assisted solid-state NMR is an excellent tool for differentiating between the different feasible electronic structures in these solids. Our results indicate that upon reduction of BaTiO3 the introduced electrons are delocalized among all Ti atoms forming a bandstate. Furthermore, each vacated anion site is reoccupied by at most a single hydride, or else remains vacant. This single occupied bandstate structure persists at different hydrogen concentrations (y = 0.13-0.31) and a wide range of temperatures (∼100-300 K).

2.
J Magn Reson ; 340: 107235, 2022 07.
Article in English | MEDLINE | ID: mdl-35644097

ABSTRACT

A combination of solid-state NMR methods for the extraction of 23Na shift and quadrupolar parameters in the as-synthesized, structurally complex NaMnO2 Na-ion cathode material, under magic-angle spinning (MAS) is presented. We show that the integration of the Magic-Angle Turning experiment with Rotor-Assisted Population transfer (RAPT) can be used both to identify shifts and to extract a range of magnitudes for their quadrupolar couplings. We also demonstrate the applicability of the two-dimensional one pulse (TOP) based double-sheared Satellite Transition Magic-Angle Spinning (TOP-STMAS) showing how it can yield a spectrum with separated shift and second-order quadrupolar anisotropies, which in turn can be used to analyze a quadrupolar lineshape free of anisotropic bulk magnetic susceptibility (ABMS) induced shift dispersion and determine both isotropic shift and quadrupolar products. Combining all these experiments, the shift and quadrupolar parameters for all observed Na environments were extracted and yielded excellent agreement with the density functional theory (DFT) based models that were reported in previous literature. We expect these methods to open the door for new possibilities for solid-state NMR to probe half-integer quadrupolar nuclei in paramagnetic materials and other systems exhibiting large shift dispersion.


Subject(s)
Magnetic Resonance Imaging , Anisotropy , Magnetic Resonance Spectroscopy/methods
3.
Nat Commun ; 12(1): 4334, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34267194

ABSTRACT

Structural and morphological control of crystalline nanoparticles is crucial in the field of heterogeneous catalysis and the development of "reaction specific" catalysts. To achieve this, colloidal chemistry methods are combined with ab initio calculations in order to define the reaction parameters, which drive chemical reactions to the desired crystal nucleation and growth path. Key in this procedure is the experimental verification of the predicted crystal facets and their corresponding electronic structure, which in case of nanostructured materials becomes extremely difficult. Here, by employing 31P solid-state nuclear magnetic resonance aided by advanced density functional theory calculations to obtain and assign the Knight shifts, we succeed in determining the crystal and electronic structure of the terminating surfaces of ultrafine Ni2P nanoparticles at atomic scale resolution. Our work highlights the potential of ssNMR nanocrystallography as a unique tool in the emerging field of facet-engineered nanocatalysts.

4.
Inorg Chem ; 60(7): 4829-4840, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33745276

ABSTRACT

Reactions of di(2-pyridyl) ketone, (py)2CO, with indium(III) halides in CH3NO2 have been studied, and a new transformation of the ligand has been revealed. In the presence of InIII, the C═O bond of (py)2CO is subjected to nucleophilic attack by the carbanion -:CH2NO2, yielding the dinuclear complexes [In2X4{(py)2C(CH2NO2)(O)}2] (X = Cl, 1; X = Br, 2; X = I, 3) in moderate to good yields. The alkoxo oxygens of the two η1:η2:η1-(py)2C(CH2NO2)(O)- ligands doubly bridge the InIII centers and create a {In2(µ2-OR)2}4+ core. Two pyridyl nitrogens of different organic ligands and two terminal halogeno ions complete a distorted-octahedral stereochemistry around each In(III) ion. After maximum excitation at 360 or 380 nm, the solid chloro complex 1 emits blue light at 420 and 440 nm at room temperature, the emission being attributed to charge transfer within the coordinated organic ligand. Solid-state 115In NMR spectra, in combination with DFT calculations, of 1-3 have been studied in detail at both 9.4 and 14.1 T magnetic fields. The nuclear quadrupolar and chemical shift parameters provide valuable findings concerning the electric field gradients and magnetic shielding at the nuclei of indium, respectively. The experimentally derived CQ values are 40 ± 3 MHz for 1, 46 ± 5 MHz for 2, and 50 ± 10 and 64 ± 7 MHz for the two crystallographically independent InIII sites for 3, while the δiso values fall in the range 130 ± 30 to -290 ± 60 ppm. The calculated CQ and asymmetry parameter (ηQ) values are fully consistent with the experimental values for 1 and 2 and are in fairly good agreement for 3. The results have been analyzed and discussed in terms of the known (1, 3) and proposed (2) structural features of the complexes, demonstrating that 115In NMR is an effective solid-state technique for the study of indium(III) complexes.

5.
Nat Commun ; 11(1): 1285, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32152300

ABSTRACT

Detecting the metallic Dirac electronic states on the surface of Topological Insulators (TIs) is critical for the study of important surface quantum properties (SQPs), such as Majorana zero modes, where simultaneous probing of the bulk and edge electron states is required. However, there is a particular shortage of experimental methods, showing at atomic resolution how Dirac electrons extend and interact with the bulk interior of nanoscaled TI systems. Herein, by applying advanced broadband solid-state 125Te nuclear magnetic resonance (NMR) methods on Bi2Te3 nanoplatelets, we succeeded in uncovering the hitherto invisible NMR signals with magnetic shielding that is influenced by the Dirac electrons, and we subsequently showed how the Dirac electrons spread inside the nanoplatelets. In this way, the spin and orbital magnetic susceptibilities induced by the bulk and edge electron states were simultaneously measured at atomic scale resolution, providing a pertinent experimental approach in the study of SQPs.

6.
Inorg Chem ; 57(8): 4640-4648, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29613786

ABSTRACT

Single crystals of the new compound Cu2(SeO3)F2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu2(SeO3)F2 is isostructural with the previously described compounds Co2TeO3F2 and CoSeO3F2. The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO3F3] octahedra, within which [SeO3] trigonal pyramids are present in voids and are connected to [CuO3F3] octahedra by corner sharing. The presence of a single local environment in both the 19F and 77Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of µeff ∼ 2.2 µB. Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...