Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 21(3)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861967

ABSTRACT

Objective. We intend to chronically restore somatosensation and provide high-fidelity myoelectric control for those with limb loss via a novel, distributed, high-channel-count, implanted system.Approach.We have developed the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system to support peripheral nerve stimulation through up to 64, 96, or 128 electrode contacts with myoelectric recording from 16, 8, or 0 bipolar sites, respectively. The rechargeable central device has Bluetooth® wireless telemetry to communicate to external devices and wired connections for up to four implanted satellite stimulation or recording devices. We characterized the stimulation, recording, battery runtime, and wireless performance and completed safety testing to support its use in human trials.Results.The stimulator operates as expected across a range of parameters and can schedule multiple asynchronous, interleaved pulse trains subject to total charge delivery limits. Recorded signals in saline show negligible stimulus artifact when 10 cm from a 1 mA stimulating source. The wireless telemetry range exceeds 1 m (direction and orientation dependent) in a saline torso phantom. The bandwidth supports 100 Hz bidirectional update rates of stimulation commands and data features or streaming select full bandwidth myoelectric signals. Preliminary first-in-human data validates the bench testing result.Significance.We developed, tested, and clinically implemented an advanced, modular, fully implanted peripheral stimulation and sensing system for somatosensory restoration and myoelectric control. The modularity in electrode type and number, including distributed sensing and stimulation, supports a wide variety of applications; iSens® is a flexible platform to bring peripheral neuromodulation applications to clinical reality. ClinicalTrials.gov ID NCT04430218.


Subject(s)
Electromyography , Humans , Electromyography/methods , Electrodes, Implanted , Wireless Technology/instrumentation , Telemetry/instrumentation , Telemetry/methods , Equipment Design/methods , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation
2.
Bioelectron Med ; 5: 2, 2019.
Article in English | MEDLINE | ID: mdl-32232093

ABSTRACT

The Cleveland Neural Engineering Workshop (NEW) was established as a biennial meeting in 2011, with subsequent meetings taking place in 2013, 2015, and most recently, June 2017. This fourth biennial NEW was hosted by the Cleveland Advanced Platform for Technology National Veterans Affairs Center, the Functional Electrical Stimulation National Veterans Affairs Center, the Biomedical Engineering Department at Case Western Reserve University in Cleveland, Ohio, and Northwell Health's Feinstein Institute for Medical Research of New York. The workshop connects leaders and stakeholders in the neural engineering community who are devoted to developing and deploying technological solutions to those with neurological disorders. The meeting in 2017 continued strategic conversations initiated at the third Cleveland NEW conference in 2015. The goal of the 2017 workshop was to was to determine specific actions by which the neural engineering community might advance the goals outlined in 2015, assess progress towards that plan, adjust as necessary, and establish continued strategic direction. This meeting report summarizes the outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...