Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(2): 1092-1104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37493097

ABSTRACT

BACKGROUND: Synovitis is one of the defining characteristics of osteoarthritis (OA) in the carpometacarpal (CMC1) joint of the thumb. Quantitative characterization of synovial volume is important for furthering our understanding of CMC1 OA disease progression, treatment response, and monitoring strategies. In previous studies, three-dimensional ultrasound (3-D US) has demonstrated the feasibility of being a point-of-care system for monitoring knee OA. However, 3-D US has not been tested on the smaller joints of the hand, which presents unique physiological and imaging challenges. PURPOSE: To develop and validate a novel application of 3-D US to monitor soft-tissue characteristics of OA in a CMC1 OA patient population compared to the current gold standard, magnetic resonance imaging (MRI). METHODS: A motorized submerged transducer moving assembly was designed for this device specifically for imaging the joints of the hands and wrist. The device used a linear 3-D scanning approach, where a 14L5 2-D transducer was translated over the region of interest. Two imaging phantoms were used to test the linear and volumetric measurement accuracy of the 3-D US device. To evaluate the accuracy of the reconstructed 3-D US geometry, a multilayer monofilament string-grid phantom (10 mm square grid) was scanned. To validate the volumetric measurement capabilities of the system, a simulated synovial tissue phantom with an embedded synovial effusion was fabricated and imaged. Ten CMC1 OA patients were imaged by our 3-D US and a 3.0 T MRI system to compare synovial volumes. The synovial volumes were manually segmented by two raters on the 2D slices of the 3D US reconstruction and MR images, to assess the accuracy and precision of the device for determining synovial tissue volumes. The Standard Error of Measurement and Minimal Detectable Change was used to assess the precision and sensitivity of the volume measurements. Paired sample t-tests were used to assess statistical significance. Additionally, rater reliability was assessed using Intra-Class Correlation (ICC) coefficients. RESULTS: The largest percent difference observed between the known physical volume of synovial extrusion in the phantom and the volume measured by our 3D US was 1.1% (p-value = 0.03). The mean volume difference between the 3-D US and the gold standard MRI was 1.78% (p-value = 0.48). The 3-D US synovial tissue volume measurements had a Standard Error Measurement (SEm ) of 11.21 mm3 and a Minimal Detectible Change (MDC) of 31.06 mm3 , while the MRI synovial tissue volume measurements had an SEM of 16.82 mm3 and an MDC of 46.63 mm3 . Excellent inter- and intra-rater reliability (ICCs = 0.94-0.99) observed across all imaging modalities and raters. CONCLUSION: Our results indicate the feasibility of applying 3-D US technology to provide accurate and precise CMC1 synovial tissue volume measurements, similar to MRI volume measurements. Lower MDC and SEm values for 3-D US volume measurements indicate that it is a precise measurement tool to assess synovial volume and that it is sensitive to variation between volume segmentations. The application of this imaging technique to monitor OA pathogenesis and treatment response over time at the patient's bedside should be thoroughly investigated in future studies.


Subject(s)
Osteoarthritis, Knee , Synovitis , Humans , Feasibility Studies , Reproducibility of Results , Synovitis/diagnostic imaging , Synovitis/etiology , Synovitis/pathology , Synovial Membrane/pathology , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/pathology , Magnetic Resonance Imaging/methods
2.
Med Phys ; 49(6): 3944-3962, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35319105

ABSTRACT

BACKGROUND: Mammographic screening has reduced mortality in women through the early detection of breast cancer. However, the sensitivity for breast cancer detection is significantly reduced in women with dense breasts, in addition to being an independent risk factor. Ultrasound (US) has been proven effective in detecting small, early-stage, and invasive cancers in women with dense breasts. PURPOSE: To develop an alternative, versatile, and cost-effective spatially tracked three-dimensional (3D) US system for whole-breast imaging. This paper describes the design, development, and validation of the spatially tracked 3DUS system, including its components for spatial tracking, multi-image registration and fusion, feasibility for whole-breast 3DUS imaging and multi-planar visualization in tissue-mimicking phantoms, and a proof-of-concept healthy volunteer study. METHODS: The spatially tracked 3DUS system contains (a) a six-axis manipulator and counterbalanced stabilizer, (b) an in-house quick-release 3DUS scanner, adaptable to any commercially available US system, and removable, allowing for handheld 3DUS acquisition and two-dimensional US imaging, and (c) custom software for 3D tracking, 3DUS reconstruction, visualization, and spatial-based multi-image registration and fusion of 3DUS images for whole-breast imaging. Spatial tracking of the 3D position and orientation of the system and its joints (J1-6 ) were evaluated in a clinically accessible workspace for bedside point-of-care (POC) imaging. Multi-image registration and fusion of acquired 3DUS images were assessed with a quadrants-based protocol in tissue-mimicking phantoms and the target registration error (TRE) was quantified. Whole-breast 3DUS imaging and multi-planar visualization were evaluated with a tissue-mimicking breast phantom. Feasibility for spatially tracked whole-breast 3DUS imaging was assessed in a proof-of-concept healthy male and female volunteer study. RESULTS: Mean tracking errors were 0.87 ± 0.52, 0.70 ± 0.46, 0.53 ± 0.48, 0.34 ± 0.32, 0.43 ± 0.28, and 0.78 ± 0.54 mm for joints J1-6 , respectively. Lookup table (LUT) corrections minimized the error in joints J1 , J2 , and J5 . Compound motions exercising all joints simultaneously resulted in a mean tracking error of 1.08 ± 0.88 mm (N = 20) within the overall workspace for bedside 3DUS imaging. Multi-image registration and fusion of two acquired 3DUS images resulted in a mean TRE of 1.28 ± 0.10 mm. Whole-breast 3DUS imaging and multi-planar visualization in axial, sagittal, and coronal views were demonstrated with the tissue-mimicking breast phantom. The feasibility of the whole-breast 3DUS approach was demonstrated in healthy male and female volunteers. In the male volunteer, the high-resolution whole-breast 3DUS acquisition protocol was optimized without the added complexities of curvature and tissue deformations. With small post-acquisition corrections for motion, whole-breast 3DUS imaging was performed on the healthy female volunteer showing relevant anatomical structures and details. CONCLUSIONS: Our spatially tracked 3DUS system shows potential utility as an alternative, accurate, and feasible whole-breast approach with the capability for bedside POC imaging. Future work is focused on reducing misregistration errors due to motion and tissue deformations, to develop a robust spatially tracked whole-breast 3DUS acquisition protocol, then exploring its clinical utility for screening high-risk women with dense breasts.


Subject(s)
Breast Neoplasms , Breast Density , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer , Female , Humans , Imaging, Three-Dimensional/methods , Male , Mammography , Phantoms, Imaging , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...