Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38334562

ABSTRACT

The aim of this investigation was to prepare novel hybrid materials with enhanced antimicrobial properties to be used in food preservation and packaging applications. Therefore, nanocomposite materials were synthesized based on two stimuli-responsive oligo(ethylene glycol methacrylate)s, namely PEGMA and PEGMEMA, the first bearing hydroxyl side groups with three different metal nanoparticles, i.e., Ag, TiO2 and ZnO. The in situ radical polymerization technique was employed to ensure good dispersion of the nanoparticles in the polymer matrix. FTIR spectra identified the successful preparation of the corresponding polymers and XRD scans revealed the presence of the nanoparticles in the polymer matrix. In the polymer bearing hydroxyl groups, the presence of Ag-NPs led to slightly lower thermal stability as measured by TGA, whereas both ZnO and TiO2 led to nanomaterials with better thermal stability. The antimicrobial activity of all materials was determined against the Gram-negative bacteria E. coli and the Gram-positive S. aureus, B. subtilis and B. cereus. PEGMEMA nanocomposites had much better antimicrobial activity compared to PEGMA. Ag NPs exhibited the best inhibition of microbial growth in both polymers with all four bacteria. Nanocomposites with TiO2 showed a very good inhibition percentage when used in PEGMEMA-based materials, while in PEGMA material, high antimicrobial activity was observed only against E. coli and B. subtilis, with moderate activity against B. cereus and almost absent activity against S. aureus. The presence of ZnO showed antimicrobial activity only in the case of PEGMEMA-based materials. Differences observed in the antibacterial activity of the polymers with the different nanoparticles could be attributed to the different structure of the polymers and possibly the more efficient release of the NPs.

2.
J Inorg Biochem ; 252: 112472, 2024 03.
Article in English | MEDLINE | ID: mdl-38215535

ABSTRACT

Group 11 metal complexes exhibit promising antibacterial and anticancer properties which can be further enhanced by appropriate ligands. Herein, a series of mononuclear thioamidato Cu(I) and Ag(I) complexes bearing either a diphosphine (P^P) or a N-heterocyclic carbene (NHC) auxiliary ligand (L) was synthesized, and the impact of the co-ligand L on the in vitro antibacterial and anticancer properties of their complexes was assessed. All complexes effectively inhibited the growth of various bacterial strains, with the NHC-Cu(I) complex found to be particularly effective against the Gram (+) bacteria (IC50 = 1-4 µg mL-1). Cytotoxicity studies against various human cancer cells revealed their high anticancer potency and the superior activity of the NHC-Ag(I) complex (IC50 = 0.95-4.5 µΜ). Flow cytometric analysis on lung and breast cancer cells treated with the NHC-Ag(I) complex suggested an apoptotic cell-death pathway; molecular docking calculations provided mechanistic insights, proving the capacity of the complex to bind on apoptosis-regulating proteins and affect their functionalities.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Heterocyclic Compounds , Humans , Ligands , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Methane/pharmacology , Coordination Complexes/pharmacology , Bacteria , Apoptosis , Heterocyclic Compounds/pharmacology
3.
Biomedicines ; 11(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38137403

ABSTRACT

Τransforming growth factor ß1 (TGF-ß1) comprises a key regulator protein in many cellular processes, including in vivo chondrogenesis. The treatment of human dental pulp stem cells, separately, with Leu83-Ser112 (C-terminal domain of TGF-ß1), as well as two very short peptides, namely, 90-YYVGRKPK-97 (peptide 8) and 91-YVGRKP-96 (peptide 6) remarkably enhanced the chondrogenic differentiation capacity in comparison to their full-length mature TGF-ß1 counterpart either in monolayer cultures or 3D scaffolds. In 3D scaffolds, the reduction of the elastic modulus and viscous modulus verified the production of different amounts and types of ECM components. Molecular dynamics simulations suggested a mode of the peptides' binding to the receptor complex TßRII-ALK5 and provided a possible structural explanation for their role in inducing chondrogenesis, along with endogenous TGF-ß1. Further experiments clearly verified the aforementioned hypothesis, indicating the signal transduction pathway and the involvement of TßRII-ALK5 receptor complex. Real-time PCR experiments and Western blot analysis showed that peptides favor the ERK1/2 and Smad2 pathways, leading to an articular, extracellular matrix formation, while TGF-ß1 also favors the Smad1/5/8 pathway which leads to the expression of the metalloproteinases ADAMTS-5 and MMP13 and, therefore, to a hypertrophic chondrocyte phenotype. Taken together, the two short peptides, and, mainly, peptide 8, could be delivered with a scaffold to induce in vivo chondrogenesis in damaged articular cartilage, constituting, thus, an alternative therapeutic approach for osteoarthritis.

4.
Pharmaceutics ; 15(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896269

ABSTRACT

(1) Background: An element that has gained much attention in industrial and biomedical fields is Cerium (Ce). CeO2 nanoparticles have been proven to be promising regarding their different biomedical applications for the control of infection and inflammation. The aim of the present study was to investigate the biological properties and antimicrobial behavior of cerium oxide (CeO2) nanoparticles (NPs). (2) Methods: The investigation of the NPs' biocompatibility with human periodontal ligament cells (hPDLCs) was evaluated via the MTT assay. Measurement of alkaline phosphatase (ALP) levels and alizarine red staining (ARS) were used as markers in the investigation of CeO2 NPs' capacity to induce the osteogenic differentiation of hPDLCs. Induced inflammatory stress conditions were applied to hPDLCs with H2O2 to estimate the influence of CeO2 NPs on the viability of cells under these conditions, as well as to reveal any ROS scavenging properties. Total antioxidant capacity (TAC) of cell lysates with NPs was also investigated. Finally, the macro broth dilution method was the method of choice for checking the antibacterial capacity of CeO2 against the anaerobic pathogens Porphyromonas gingivalis and Prevotella intermedia. (3) Results: Cell viability assay indicated that hPDLCs increase their proliferation rate in a time-dependent manner in the presence of CeO2 NPs. ALP and ARS measurements showed that CeO2 NPs can promote the osteogenic differentiation of hPDLCs. In addition, the MTT assay and ROS determination demonstrated some interesting results concerning the viability of cells under oxidative stress conditions and, respectively, the capability of NPs to decrease free radical levels over the course of time. Antimicrobial toxicity was observed mainly against P. gingivalis. (4) Conclusions: CeO2 NPs could provide an excellent choice for use in clinical practices as they could prohibit bacterial proliferation and control inflammatory conditions.

5.
Biomedicines ; 11(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37509529

ABSTRACT

The regeneration of articular cartilage remains a serious problem in various pathological conditions such as osteoarthritis, due to the tissue's low self-healing capacity. The latest therapeutic approaches focus on the construction of biomaterials that induce cartilage repair. This research describes the design, synthesis, and investigation of a safe, "smart", fibrous scaffold containing a genetically incorporated active peptide for chondrogenic induction. While possessing specific sequences and the respective mechanical properties from natural fibrous proteins, the fibers also incorporate a Transforming Growth Factor-ß1 (TGF-ß1)-derived peptide (YYVGRKPK) that can promote chondrogenesis. The scaffold formed stable porous networks with shear-thinning properties at 37 °C, as shown by SEM imaging and rheological characterization, and were proven to be non-toxic to human dental pulp stem cells (hDPSCs). Its chondrogenic capacity was evidenced by a strong increase in the expression of specific chondrogenesis gene markers SOX9, COL2, ACAN, TGFBR1A, and TGFBR2 in cells cultured on "scaffold-TGFß1" for 21 days and by increased phosphorylation of intracellular signaling proteins Smad-2 and Erk-1/2. Additionally, intense staining of glycosaminoglycans was observed in these cells. According to our results, "scaffold-TGFß1" is proposed for clinical studies as a safe, injectable treatment for cartilage degeneration.

6.
Biomedicines ; 11(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37371681

ABSTRACT

SARS-CoV-2 ORF3a accessory protein was found to be involved in virus release, immunomodulation and exhibited a pro-apoptotic character. In order to unravel a potential ORF3a-induced apoptotic and inflammatory death mechanism, lung epithelial cells (A549) were transfected with in vitro synthesized ORF3a mRNA. The protein's dynamic involvement as "stress factor" for the endoplasmic reticulum, causing the activation of PERK kinase and other UPR-involved proteins and therefore the upregulation of their signaling pathway executioners (ATF6, XBP-1s, PERK, phospho eIF2a, ATF4, CHOP, GADD34), has been clearly demonstrated. Furthermore, the overexpression of BAX and BH3-only pro-apoptotic protein PUMA, the upregulation of Bcl-2 family genes (BAX, BAK, BID, BAD), the reduced expression of Bcl-2 in mRNA and protein levels, and lastly, the cleavage of PARP-1 and caspase family members (caspase-3,-8 and -9) indicate that ORF3a displays its apoptotic character through the mitochondrial pathway of apoptosis. Moreover, the upregulation of NFκB, phosphorylation of p65 and IκΒα and the elevated expression of pro-inflammatory cytokines (IL-1b, IL-6, IL-8 and IL-18) in transfected cells with ORF3a mRNA indicate that this protein causes the inflammatory response through NFκB activation and therefore triggers lung injury. An intriguing finding of our study is that upon treatment of the ORF3a-transfected cells with GSK2606414, a selective PERK inhibitor, both complications (apoptosis and inflammatory response) were neutralized, and cell survival was favored, whereas treatment of transfected cells with z-VAD (a pan-caspase inhibitor) despite inhibiting cell death, could not ameliorate the inflammatory response of transfected A549 cells. Given the above, we point out that PERK kinase is a "master tactician" and its activation constitutes the main stimulus for the emergence of ORF3a apoptotic and inflammatory nature and therefore could serve as potential target for developing novel therapeutic approaches against COVID-19.

7.
Pharmaceutics ; 15(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37242681

ABSTRACT

Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.

8.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049329

ABSTRACT

This work describes the design, preparation, and deep investigation of "intelligent nanobiomaterials" that fulfill the safety rules and aim to serve as "signal deliverers" for osteogenesis, harboring a specific peptide that promotes and enhances osteogenesis at the end of their hydrogel fibers. The de novo synthesized protein fibers, besides their mechanical properties owed to their protein constituents from elastin, silk fibroin and mussel-foot adhesive protein-1 as well as to cell-attachment peptides from extracellular matrix glycoproteins, incorporate the Bone Morphogenetic Protein-2 (BMP2) peptide (AISMLYLDEN) that, according to our studies, serves as "signal deliverer" for osteogenesis. The osteogenetic capacity of the biomaterial has been evidenced by investigating the osteogenic marker genes ALP, RUNX2, Osteocalcin, COL1A1, BMPR1A, and BMPR2, which were increased drastically in cells cultured on scaffold-BMP2 for 21 days, even in the absence of osteogenesis medium. In addition, the induction of phosphorylation of intracellular Smad-1/5 and Erk-1/2 proteins clearly supported the osteogenetic capacity of the biomaterial.

9.
ACS Omega ; 8(8): 7529-7535, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873033

ABSTRACT

Recently, miRNAs have been established as promising, specific biomarkers for the diagnosis of many diseases, including osteoarthritis. Herein, we report a ssDNA-based detection method for miRNAs implicated in osteoarthritis, specifically, miR-93 and miR-223. In this study, gold nanoparticles (AuNPs) were modified with oligonucleotide ssDNA to detect miRNAs circulating in the blood in healthy subjects and patients suffering from osteoarthritis. The detection method was based on the colorimetric and spectrophotometric assessment of biofunctionalized AuNPs upon interaction with the target and their subsequent aggregation. Results showed that these methods could be used to detect easily and rapidly miR-93 but not miR-223 in osteoarthritic patients, and they could potentially be used as a diagnostic tool for blood biomarkers. Visual-based detection as well as spectroscopic methods are simple, rapid, and label-free, due to which they can be used as a diagnostic tool.

10.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615533

ABSTRACT

Ag(I) coordination compounds have recently attracted much attention as antiproliferative and antibacterial agents against a wide range of cancer cell lines and pathogens. The bioactivity potential of these complexes depends on their structural characteristics and the nature of their ligands. Herein, we present a series of four Ag(I) coordination compounds bearing as ligands the CH3-substituted thiadiazole-based thioamide 5-methyl-1,3,4-thiadiazole-2-thiol (mtdztH) and phosphines, i.e., [AgCl(mtdztH)(PPh3)2] (1), [Ag(mtdzt)(PPh3)3] (2), [AgCl(mtdztH)(xantphos)] (3), and [AgmtdztH)(dppe)(NO3)]n (4), where xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and dppe = 1,2-bis(diphenylphosphino)ethane, and the assessment of their in vitro antibacterial and anti-cancer efficiency. Among them, diphosphine-containing compounds 3 and 4 were found to exhibit broad-spectrum antibacterial activity characteristics against both Gram-(+) and Gram-(-) bacterial strains, showing high in vitro bioactivity with IC50 values as low as 4.6 µΜ. In vitro cytotoxicity studies against human ovarian, pancreatic, lung, and prostate cancer cell lines revealed the strong cytotoxic potential of 2 and 4, with IC50 values in the range of 3.1-24.0 µΜ, while 3 and 4 maintained the normal fibroblast cells' viability at relatively higher levels. Assessment of these results, in combination with those obtained for analogous Ag(I) complexes bearing similar heterocyclic thioamides, suggest the pivotal role of the substituent groups of the thioamide heterocyclic ring in the antibacterial and anti-cancer efficacy of the respective Ag(I) complexes. Compounds 1-4 exhibited moderate in vitro antioxidant capacity for free radicals scavenging, as well as reasonably strong ability to interact with calf-thymus DNA, suggesting the likely implication of these properties in their bioactivity mechanisms. Complementary insights into the possible mechanism of their anti-cancer activity were provided by molecular docking calculations, exploring their ability to bind to the overexpressed fibroblast growth factor receptor 1 (FGFR1), affecting cancer cells' functionalities.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Coordination Complexes/chemistry , Molecular Docking Simulation , Silver/chemistry , Thioamides/pharmacology
11.
RSC Med Chem ; 13(7): 857-872, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35923721

ABSTRACT

Cytotoxic potential of Ag(i) coordination compounds against cancer cells is widely recognized, but their frequently low water solubility and potential adverse interactions of Ag(i) ions in biological media require their incorporation into suitable platforms to ensure effective transport and delivery at target sites. Herein, we developed and evaluated the in vitro cytotoxic activity of a biodegradable copolymer-based nano-sized drug delivery system for three cytotoxically active and lipophillic Ag(i) compounds. In particular, polymer-based nanoparticles of the newly synthesized amphiphilic methoxy-poly(ethylene glycol)-poly(caprolactone) (mPEG-PCL) copolymer were prepared as carriers for [Ag(dmp2SH)(PPh3)2]NO3 (1), [Ag(dmp2SH)(xantphos)]NO3 (2) and [Ag(dmp2S)(xantphos)] (3) (dmP2SH = 4,6-dimethylpyrimidine-2-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) which exhibit high cytotoxicity against HeLa cancer cells, while they maintain low toxicity against HDFa normal cells. Taking advantage of the favorable donor-acceptor Lewis acid-base and electrostatic interactions between functional groups of 1-3 and mPEG-PCL copolymer, the formation of [X]@mPEG-PCL (X = 1,2,3) nanoparticles with nearly spherical shape was achieved. Satisfactory loading capacities and encapsulation efficiencies were obtained (13-15% and 80-88%, respectively). Differences in their mean size diameters were observed, revealing a dependence on the individual structural characteristics of the Ag(i) compounds. In vitro release profiles of the nanoparticles showed an initial burst stage, followed by a prolonged release stage extending over 15 days, with their release rates being determined by the mean size of the nanoparticles, as well as the type and crystallinity of the encapsulated Ag(i) compounds. In vitro cytotoxicity studies revealed an increased cytotoxic activity of compounds 1-3 after their encapsulation in mPEG-PCL copolymer against HeLa cells, with the actual concentrations of the loaded compounds responsible for the inhibition of cell viability being reduced by 8 times compared to the compounds in free form. Therefore, the current drug delivery system improves the pharmacokinetic properties of the three cytotoxic and biocompatible Ag(i) compounds, and may be beneficial for future in vivo anticancer treatment.

12.
Dalton Trans ; 51(24): 9412-9431, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35674362

ABSTRACT

In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(µ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(µ-atdzt)(DPEphos)]2 (4), and [Ag(µ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 µM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Escherichia coli , Ligands , Molecular Docking Simulation , Silver/chemistry , Silver/pharmacology , Staphylococcus aureus , Thioamides/pharmacology
13.
J Inorg Biochem ; 228: 111695, 2022 03.
Article in English | MEDLINE | ID: mdl-35007963

ABSTRACT

A series of heteroleptic Ag(I) complexes bearing 4,6-dimethyl-2-pyrimidinethiol (dmp2SH), i.e., [AgCl(dmp2SH)(PPh3)2] (1), [Ag(dmp2SH)(PPh3)2]NO3 (2), [Ag(dmp2SΗ)(xantphos)]NO3 (3), [Ag(µ-dmp2S)(PPh3)]2 (4), [Ag(dmp2S)(xantphos)] (5), [Ag(µ-dmp2S)(DPEphos)]2 (6) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and DPEPhos = bis[(2-diphenylphosphino)phenyl]ether) were synthesized. The complexes display systematic variation of particular structural characteristics which were proved to have a significant impact on their in vitro cytotoxicity and antimicrobial properties. A moderate-to-high potential for bacteria growth inhibition was observed for all complexes, with 2, 3 and 5 being particularly effective against Gram-(+) bacteria (IC50 = 1.6-4.5 µM). The three complexes exhibit high in vitro cytotoxicity against HeLa and MCF-7 cancer cells (IC50 = 0.32-3.00 µΜ), suggesting the importance of coordination unsaturation and cationic charge for effective bioactivity. A very low cytotoxicity against HDFa normal cells was observed, revealing a high degree of selectivity (selectivity index ~10) and, hence, biocompatibility. Fluorescence microscopy using 2 showed effective targeting on the membrane of the HeLa cancer cells, subsequently inducing cell death. Binding of the complexes to serum albumin proteins is reasonably strong for potential uptake and subsequent release to target sites. A moderate in vitro antioxidant capacity for free radicals scavenging was observed and a low potential to destroy the double-strand structure of calf-thymus DNA by intercalation, suggesting likely implication of these properties in the bioactivity mechanisms of these complexes. Further insight into possible mechanisms of bioactivity was obtained by molecular modeling calculations, by exploring their ability to act as potential inhibitors of DNA-gyrase, human estrogen receptor alpha, human cyclin-dependent kinase 6, and human papillomavirus E6 oncoprotein.


Subject(s)
Anti-Infective Agents/pharmacology , Coordination Complexes/chemistry , Silver/chemistry , Thioamides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Bacteria/drug effects , Cyclin-Dependent Kinase 6/metabolism , DNA/metabolism , DNA Gyrase/metabolism , HeLa Cells , Humans , Ligands , MCF-7 Cells , Microbial Sensitivity Tests/methods , Models, Molecular , Molecular Docking Simulation/methods , Phosphines/chemistry , Silver/pharmacology , Thioamides/pharmacology , Xanthenes/chemistry
14.
Foods ; 10(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34945475

ABSTRACT

Oregano essential oil (OEO), due to its wide variety of biological activities, could be a "green" alternative to chemical preservatives. On the other hand, the difficulties in its use or storage have turned researchers' interest in encapsulation strategies as a way to face stability and handling issues. Fabrication of OEO-loaded particles, using nano spray drying technique (NSD) and whey protein isolate-maltodextrin mixtures (1:1, 1:3) as wall materials appears to be a novel and promising strategy. The obtained particles were characterized in terms of volatile composition, encapsulation efficiency, and physicochemical, molecular, morphological, and antibacterial properties. The results confirmed that encapsulation of OEO using NSD achieved high levels of powder recovery (>77%) and encapsulation efficiency (>98%) while assisting in the retention of the main bioactive compounds. The partial replacement of WPI by MD significantly affected particles' physical properties. FTIR analyses revealed the possible structural stabilization of core and wall materials, while SEM verified the very fine size and spherical shape. Finally, antibacterial studies demonstrated their activity against Escherichia coli and Staphylococcus aureus, which is much stronger in comparison with that of pure OEO, proving the positive effect of NSD and particles' potential in future food applications.

15.
ACS Biomater Sci Eng ; 7(11): 5064-5077, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34666482

ABSTRACT

Elastin-like polypeptides (ELPs) are protein-based biopolymers genetically produced from polypeptides composed of a repeating pentapeptide sequence V-P-G-X-G. The inherent properties of recombinant ELPs, such as smart nature, controlled sequence complexity, physicochemical properties, and biocompatibility, make these polymers suitable for use in nanobiotechnological applications, as biofunctionalized scaffolds for tissue-engineering purposes and drug delivery. In this work, we report the design and synthesis of two elastomeric self-assembling polypeptides (ELPs) that mimic the endogenous human tropoelastin. Using molecular biology techniques, two artificial genes that encode two ELP concatemers of approximate molecular mass 60 kDa, one of them carrying biotin-binding peptide motifs, were constructed. These motifs could facilitate biofunctionalization of the ELPs through tethering biotinylated factors, such as growth factors. The ELPs were heterologously overexpressed in E. coli and subsequently purified in two steps: a nonchromatographic technique by organic solvent extraction, followed by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The characterization of the biochemical properties and biocompatibility of ELPs was also performed in this study. The ELP carrying the biotin-binding motifs was tested for its capability to bind biotin, and indeed, it was observed that it can bind biotinylated proteins specifically. Additionally, results concerning the cytotoxicity of the ELPs exhibited excellent compatibility of the ELPs with mammalian cells in vitro. We anticipate that these ELPs can be used as components of a scaffold that mimics the extracellular matrix (ECM) for the regeneration of endogenously highly elastic tissues.


Subject(s)
Elastin , Escherichia coli , Animals , Biopolymers , Drug Delivery Systems , Elastin/genetics , Escherichia coli/genetics , Humans , Peptides/genetics
16.
Bone Rep ; 15: 101125, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34632002

ABSTRACT

Zinc Finger Protein 217 (ZNF217), a transcription factor and oncogene product, has been found to dysregulate Bone Morphogenetic Protein (BMP) signaling and induce invasion in breast tumors. In this study, the effect of BMP-2 or an active BMP-2 peptide, AISMLYLDEN, on the expression of ZNF217, BMP4 and CDK-inhibitor p21 gene, CDKN1A, was investigated in MCF-7 breast cancer cells. In parallel, the entire protein (BMP-2) as well as the aforementioned peptide were investigated in hDPSCs during osteogenic differentiation. The treatment of MCF-7 cancer cells with different concentrations of peptide AISMLYLDEN showed that the addition of 22.6 ng/ml was more effective in comparison to the other used concentrations. In particular, 48 h after treatment, CDKN1A and BMP4 mRNA levels were substantially increased in contrast to ZNF217 mRNA levels which were decreased. These results are strongly supported by BrdU assay that clearly indicated inhibition of cancer cell proliferation. Taken together, these results open ways for a concurrent use, at appropriate concentrations, of the peptide AISMLYLDEN during conventional therapeutic treatment in breast tumors with a metastatic tendency to the bones. Regarding the effect of the entire protein as well as its peptide on hDPSCs differentiation into osteocytes, the mRNA levels of osteocalcin, an osteogenic marker, showed that the peptide enhanced osteogenesis at a higher degree in comparison to the entire BMP-2 without however altering ZNF217, CDKN1A and BMP4 expression levels, which remained as expected of non-cancer cells.

17.
Vaccines (Basel) ; 9(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34452015

ABSTRACT

Administration of mRNA against SARS-CoV-2 has demonstrated sufficient efficacy, tolerability and clinical potential to disrupt the vaccination field. A multiple-arm, cohort randomized, mixed blind, placebo-controlled study was designed to investigate the in vivo expression of mRNA antibodies to immunosuppressed murine models to conduct efficacy, safety and bioavailability evaluation. Enabling 4.0 tools we reduced animal sacrifice, while interventions were designed compliant to HARRP and SPIRIT engagement: (a) Randomization, blinding; (b) pharmaceutical grade formulation, monitoring; (c) biochemical and histological analysis; and (d) theoretic, statistical analysis. Risk assessment molded the study orientations, according to the ARRIVE guidelines. The primary target of this protocol is the validation of the research hypothesis that autologous translation of Trastuzumab by in vitro transcribed mRNA-encoded antibodies to immunosuppressed animal models, is non-inferior to classical treatments. The secondary target is the comparative pharmacokinetic assessment of the novel scheme, between immunodeficient and healthy subjects. Herein, the debut clinical protocol, investigating the pharmacokinetic/pharmacodynamic impact of mRNA vaccination to immunodeficient organisms. Our design, contributes novel methodology to guide the preclinical development of RNA antibody modalities by resolving efficacy, tolerability and dose regime adjustment for special populations that are incapable of humoral defense.

18.
Bone Rep ; 14: 101092, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34026953

ABSTRACT

The shortest functional domains of growth factor Bone Morphogenetic Protein 2 (BMP-2) that are dynamical implicated in osteogenesis have been investigated and well characterized. In particular, the broad C-terminal region expanding from Val63 to Arg114 as well as its shorter sequence 86-AISMLYLDEN-95 exhibited the highest osteogenic ability for regeneration and reconstruction of bone tissue. In addition, the amino acids Ser88 and Leu90 have been identified as crucial for receptor binding and osteogenic efficacy. Furthermore, the above-mentioned domains in contrary to full length BMP-2 protein signal mainly through the Smad pathway as it is evidenced by phosphorylation decrease of Extracellular-signal-Regulated Kinase (ERK1/2). Taking together, our results are significant for clinical applications regarding the generation of biomaterials and healing of orthopedic fractures.

19.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451168

ABSTRACT

Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 µm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 µm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...