Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 78(11): 2925-2938, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29510994

ABSTRACT

Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence-free survival following 5-fluorouracil-based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDHHigh CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDHHigh phenotype. Next-generation sequencing in ALDHHigh cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer.Significance: Claudin-2-mediated regulation of YAP activity and miR-222-3p expression drives CSC renewal in colorectal cancer, making it a potential target for therapy. Cancer Res; 78(11); 2925-38. ©2018 AACR.


Subject(s)
Cell Self Renewal/physiology , Claudin-2/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/physiopathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/physiology , Zonula Occludens-2 Protein/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs , Signal Transduction/physiology
2.
Proc Natl Acad Sci U S A ; 107(6): 2628-33, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20133805

ABSTRACT

Symplekin is a ubiquitously expressed protein involved in cytoplasmic RNA polyadenylation and transcriptional regulation and is localized at tight junctions (TJs) in epithelial cells. Nuclear symplekin cooperates with the Y-box transcription factor zonula occludens 1-associated nucleic acid-binding protein (ZONAB) to increase the transcription of cell cycle-related genes and also inhibits differentiation of intestinal cells. We detected high levels of nuclear symplekin in 8 of 12 human colorectal cancer (CRC) samples. shRNA-mediated reduction of symplekin expression was sufficient to decrease significantly the anchorage-independent growth and proliferation of HT-29 CRC cells as well as their tumorigenicity when injected into immunodeficient animals. Symplekin down-regulation also was found to alter ion transport through TJs, to promote the localization of ZONAB in the membrane rather than the nucleus, and strongly to enhance cell polarization in a 3D matrix, leading to the formation of spheroids organized around a central lumen. Claudin-2 expression was reduced following symplekin down-regulation, an effect mimicked when ZONAB expression was down-regulated using selective siRNA. Virus-mediated restoration of claudin-2 expression was found to restore nuclear expression of ZONAB in HT29DeltaSym cells and to rescue the phenotypic alterations induced by symplekin down-regulation of cell polarity, paracellular transport, ZONAB localization, cyclin D1 expression, proliferation, and anchorage-independent growth. Finally, siRNA-mediated claudin-2 down-regulation increased the transepithelial resistance and decreased cyclin D1 expression and ZONAB nuclear localization, similar to observations in symplekin-depleted cells. Our results suggest that nuclear overexpression of symplekin promotes tumorigenesis in the human colon and that the regulation of claudin-2 expression is instrumental in this effect.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , Nuclear Proteins/genetics , Animals , Blotting, Western , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Proliferation , Claudins , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , Fluorescent Antibody Technique , HT29 Cells , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous , Tumor Burden , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...