Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Enzymes ; 56: 135-189, 2024.
Article in English | MEDLINE | ID: mdl-39304286

ABSTRACT

Melanin, which is produced by melanocytes and spread over keratinocytes, is responsible for human skin browning. There are several processes involved in melanogenesis, mostly prompted by enzymatic activities. Tyrosinase (TYR), a copper containing metalloenzyme, is considered the main actor in melanin production, as it catalyzes two crucial steps that modify tyrosine residues in dopaquinone. For this reason, TYR inhibition has been exploited as a possible mechanism of modulation of hyper melanogenesis. There are various types of molecules used to block TYR activity, principally used as skin whitening agents in cosmetic products, e.g., tretinoin, hydroquinone, azelaic acid, kojic acid, arbutin and peptides. Peptides are highly valued for their versatile nature, making them promising candidates for various functions. Their specificity often leads to excellent safety, tolerability, and efficacy in humans, which can be considered their primary advantage over traditional small molecules. There are several examples of tyrosinase inhibitor peptides (TIPs) operating as possible hypo-pigmenting agents, which can be classified according to their origin: natural, hybrid or synthetically produced. Moreover, the possibility of variating their backbones, introducing non-canonical amino acids or modifying one or more peptide bond(s), to obtain peptidomimetic molecules, is an added value to avoid or delay proteolytic activity, while the possibility of conjugation with other bioactive peptides or organic moieties can bring other specific activity leading to dual-functional peptides.


Subject(s)
Enzyme Inhibitors , Monophenol Monooxygenase , Peptides , Peptidomimetics , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Humans , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Peptides/chemistry , Peptides/pharmacology , Animals , Melanins/metabolism , Melanins/antagonists & inhibitors
2.
Biomolecules ; 14(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39199370

ABSTRACT

In recent years, there has been increasing interest in developing novel materials based on natural biopolymers as a renewable alternative to petroleum-based plastics. The availability of proteins derived from agricultural by-products, along with their favourable properties, has fostered a renewed interest in protein-based materials, promoting research in innovative technologies. In this study, we propose the use of rapeseed protein-rich meal as the main ingredient for the preparation of novel sustainable materials combining excellent environmental properties such as biodegradability and renewability. The application of sustainable products in the present high-tech society requires the modification of the basic native properties of these natural compounds. The original route proposed in this paper consists of preparation via the compression moulding of flexible biomaterials stabilized by crosslinkers/chain extenders. An investigation of the effects of different denaturing and disulfide bond reducing agents, crosslinkers, and preparation conditions on the material mechanical behaviour demonstrated that the novel materials have appreciable strength and stiffness. The results show the potential of utilizing full meal from vegetable by-products to prepare protein-based materials with guaranteed ecofriendly characteristics and mechanical properties adequate for specific structural applications.


Subject(s)
Brassica rapa , Brassica rapa/chemistry , Biocompatible Materials/chemistry , Plant Proteins/chemistry
3.
Methods Mol Biol ; 2821: 157-163, 2024.
Article in English | MEDLINE | ID: mdl-38997487

ABSTRACT

Antibodies from sera of a multiple sclerosis (MS) patient subpopulation preferentially recognize the hyperglucosylated adhesin protein HMW1ct(Glc) of the pathogen Haemophilus influenzae. This protein is the first example of an N-glucosylated native antigen candidate, potentially triggering pathogenic antibodies in MS. Specific antibodies in patients' sera can be isolated exploiting their biospecific interaction with antigens by affinity chromatography. Herein, the proteins HMW1ct and HMW1ct(Glc) were first immobilized on appropriately functionalized supports and further used to purify antibodies directly from MS patients sera. We describe a protocol to obtain an antibody fraction specifically recognizing the glusosylated residues on the HMW1ct(Glc) adhesin protein depleting antibodies to the unglucosylated HMW1ct sequence. Different elution solutions have been tested to recover the purified antibody fraction, strongly bound to the immobilized HMW1ct(Glc) adhesin protein.


Subject(s)
Adhesins, Bacterial , Chromatography, Affinity , Haemophilus influenzae , Chromatography, Affinity/methods , Adhesins, Bacterial/immunology , Adhesins, Bacterial/isolation & purification , Humans , Haemophilus influenzae/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Glycosylation
4.
Langmuir ; 40(24): 12381-12393, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836557

ABSTRACT

A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several ß-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.


Subject(s)
Acyl Carrier Protein , Acyl Carrier Protein/chemistry , Hydrogen-Ion Concentration , Temperature , Gels/chemistry , Glycerol/chemistry , Water/chemistry
5.
ACS Infect Dis ; 10(8): 2717-2727, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-38885643

ABSTRACT

There are still no linear antimicrobial peptides (AMPs) available as a treatment option against bacterial infections. This is caused by several drawbacks that come with AMPs such as limited proteolytic stability and low selectivity against human cells. In this work, we screened a small library of rationally designed new peptides based on the cell-penetrating peptide sC18* toward their antimicrobial activity. We identified several effective novel AMPs and chose one out of this group to further increase its potency. Therefore, we introduced a triazole bridge at different positions to provide a preformed helical structure, assuming that this modification would improve (i) proteolytic stability and (ii) membrane activity. Indeed, placing the triazole bridge within the hydrophilic part of the linear analogue highly increased membrane activity as well as stability against enzymatic digestion. The new peptides, 8A and 8B, demonstrated high activity against several bacterial species tested including pathogenic N. gonorrhoeae and methicillin-resistant S. aureus. Since they exhibited significantly good tolerability against human fibroblast and blood cells, these novel peptides offer true alternatives for future clinical applications and are worth studying in more detail.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Triazoles , Humans , Triazoles/pharmacology , Triazoles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Neisseria gonorrhoeae/drug effects , Bacteria/drug effects , Fibroblasts/drug effects
6.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792059

ABSTRACT

Bicyclic peptides have attracted the interest of pharmaceutical companies because of their remarkable properties, putting them on a new path in medicine. Their conformational rigidity improves proteolytic stability and leads to rapid penetration into tissues via any possible route of administration. Moreover, elimination of renal metabolism is of great importance, for example, for people with a history of liver diseases. In addition, each ring can function independently, making bicyclic peptides extremely versatile molecules for further optimization. In this paper, we compared the potentiometric and spectroscopic properties studied by UV-vis, MCD, and EPR of four synthetic analogues of the bi-cyclic peptide c(PKKHP-c(CFWKTC)-PKKH) (BCL). In particular, we correlated the structural and spectral properties of complexes with coordinating abilities toward Cu(II) ions of MCL1 (Ac-PKKHPc(CFWKTC)PKKH-NH2) that contains the unbinding cycle and N- and C-terminal linear parts with two histidine residues, one per part; two monocyclic ligands containing one histidine residue, both in the N-terminal position, i.e., MCL2 (Ac-PKKHPc(CFWKTC)PKKS-NH2) and in the C-terminal position, i.e., MCL3 (Ac-PKKSPc(CFWKTC)PKKH-NH2), respectively; and the linear structure LNL (Ac-PKKHPSFWKTSPKKH-NH2). Potentiometric results have shown that the bicyclic structure promotes the involvement of the side chain imidazole donors in Cu(II) binding. On the other hand, the results obtained for the mono-cyclic analogues lead to the conclusion that the coordination of the histidine moiety as an anchoring group is promoted by its location in the peptide sequence further from the nonbinding cycle, strongly influencing the involvement of the amide donors in Cu(II) coordination.


Subject(s)
Copper , Peptides, Cyclic , Copper/chemistry , Peptides, Cyclic/chemistry , Coordination Complexes/chemistry , Ligands , Ions/chemistry , Potentiometry
7.
J Pept Sci ; 30(9): e3605, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38660732

ABSTRACT

On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and ß-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.


Subject(s)
Peptides , Solid-Phase Synthesis Techniques , Solvents , Solvents/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amyloid beta-Peptides/chemistry , Green Chemistry Technology , Dimethylformamide/chemistry , Dimethyl Sulfoxide/chemistry , Peptide Fragments/chemistry , Peptide Fragments/chemical synthesis , SARS-CoV-2 , Heating , Automation , Hot Temperature
8.
J Pept Sci ; 30(2): e3541, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37699615

ABSTRACT

To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-19 pandemic continues to be a potentially lethal disease. Although both vaccines and specific antiviral drugs have been approved, the search for more specific therapeutic approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of several stages, and each one can be selectively blocked to disrupt viral infection. Peptides are a promising class of antiviral compounds, which may be suitably modified to be more stable, more effective, and more selective towards a specific viral replication step. The latter two goals might be obtained by increasing the specificity and/or the affinity of the interaction with a specific target and often imply the stabilization of the secondary structure of the active peptide. This review is focused on modified antiviral peptides against SARS-CoV-2 acting at different stages of virus replication, including ACE2-RBD interaction, membrane fusion mechanism, and the proteolytic cleavage by different viral proteases. Therefore, the landscape presented herein provides a useful springboard for the design of new and powerful antiviral therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Pandemics , Peptides/pharmacology
9.
J Pept Sci ; 30(3): e3547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37752675

ABSTRACT

Argireline (Ac-EEMQRR-NH2 ), a well-known neurotransmitter peptide with a potency similar to botulinum neurotoxins, reveals a proven affinity toward Cu(II) ions. We report herein Cu(II) chelating properties of three new Argireline derivatives, namely, AN4 (Ac-EAHRR-NH2 ), AN5 (Ac-EEHQRR-NH2 ), and AN6 (Ac-EAHQRK-NH2 ). Two complementary experimental techniques, i.e., potentiometric titration (PT) and isothermal titration calorimetry (ITC), have been employed to describe the acid-base properties of the investigated peptides as well as the thermodynamic parameters of the Cu(II) complex formation. Additionally, based on density functional theory (DFT) calculations, we propose the most likely structures of the resulting Cu-peptide complexes. Finally, the cytotoxicity of the free peptides and the corresponding Cu(II) complexes was estimated in human skin cells for their possible future cosmetic application. The biological results were subsequently compared with free Argireline, its Cu(II)-complexes, and the previously studied AN2 derivative (EAHQRR).


Subject(s)
Coordination Complexes , Copper , Humans , Copper/chemistry , Peptides/pharmacology , Peptides/chemistry , Oligopeptides/chemistry , Ions , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
10.
J Pept Sci ; 30(2): e3543, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37734745

ABSTRACT

The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges. Different systems, such as pure liquids, aqueous solutions, and systems formed by melittin protein and cosolvent/water solutions, have been used to validate the new models. The calculated macroscopic and structural properties are in agreement with experimental findings, supporting the validity of the newly proposed models.


Subject(s)
Alcohols , Melitten , Melitten/chemistry , Solvents/chemistry , Alcohols/chemistry , Peptides/chemistry , Proteins/chemistry , Water/chemistry , Trifluoroethanol/chemistry
11.
Expert Opin Ther Pat ; 33(12): 865-873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38131310

ABSTRACT

INTRODUCTION: Thymosins are small proteins found mainly in the thymus. They are involved in several biological processes, including immunoregulation, angiogenesis, and anti-inflammatory activity. Due to these multiple activities, thymosins are widely used as therapeutics. In fact, these peptides have shown interesting results in the treatment of eye disorders, anticancer therapy, and dysregulated immune disorders. AREA COVERED: We analyzed the thymosins therapeutic patent landscape describing the most significant patents published after 2018 and originally written in English, classified according to the different type of functions and diseases. We searched 'Thymosin' on Patentscope and Espacenet. EXPERT OPINION: Thymalfasin (Zadaxin) is the only FDA-approved thymosine-based drug used to treat chronic hepatitis B and C and as a chemotherapy inducer. This outcome demonstrates how thymosins can be exploited as therapeutics, especially in immunological and anti-cancer therapies. However, the development of modified thymosins could expand their therapeutic interest and application in different diseases. In fact, by chemical modifications, it is possible to increase proteolytic stability in the biological environment, enhance cell permeability, and stabilize the secondary structure of the peptide. Finally, the development of shorter sequences could reduce the cost and production time of these thymosin-based drugs.


Subject(s)
Thymosin , Thymus Gland , Humans , Patents as Topic , Thymosin/pharmacology , Thymosin/chemistry , Thymosin/metabolism
13.
J Enzyme Inhib Med Chem ; 38(1): 2254019, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735942

ABSTRACT

Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I ß-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.


Subject(s)
Alkynes , Oxytocin , Oxytocin/pharmacology , Azides , Catalysis , Disulfides
14.
Virus Res ; 334: 199170, 2023 09.
Article in English | MEDLINE | ID: mdl-37422270

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/metabolism , Peptides/pharmacology , Peptides/metabolism , Glycoproteins
15.
ACS Omega ; 8(25): 22665-22672, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37387789

ABSTRACT

Despite the availability of vaccines, COVID-19 continues to be aggressive, especially in immunocompromised individuals. Therefore, the development of a specific therapeutic agent with antiviral activity against SARS-CoV-2 is necessary. The infection pathway starts when the receptor binding domain of the viral spike protein interacts with the angiotensin converting enzyme 2 (ACE2), which acts as a host receptor for the RBD expressed on the host cell surface. In this scenario, ACE2 analogs binding to the RBD and preventing the cell entry can be promising antiviral agents. Most of the ACE2 residues involved in the interaction belong to the α1 helix, more specifically to the minimal fragment ACE2(24-42). In order to increase the stability of the secondary structure and thus antiviral activity, we designed different triazole-stapled analogs, changing the position and the number of bridges. The peptide called P3, which has the triazole-containing bridge in the positions 36-40, showed promising antiviral activity at micromolar concentrations assessed by plaque reduction assay. On the other hand, the double-stapled peptide P4 lost the activity, showing that excessive rigidity disfavors the interaction with the RBD.

16.
J Enzyme Inhib Med Chem ; 38(1): 2193676, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37146256

ABSTRACT

The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.


Subject(s)
Agaricales , Cosmeceuticals , Thiosemicarbazones , Animals , Mice , Monophenol Monooxygenase , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Melanins
17.
Chembiochem ; 24(12): e202200741, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36892535

ABSTRACT

Post-translational modifications affect protein biology under physiological and pathological conditions. Efficient methods for the preparation of peptides and proteins carrying defined, homogeneous modifications are fundamental tools for investigating these functions. In the case of mucin 1 (MUC1), an altered glycosylation pattern is observed in carcinogenesis. To better understand the role of MUC1 glycosylation in the interactions and adhesion of cancer cells, we prepared a panel of homogeneously O-glycosylated MUC1 peptides by using a quantitative chemoenzymatic approach. Cell-adhesion experiments with MCF-7 cancer cells on surfaces carrying up to six differently glycosylated MUC1 peptides demonstrated that different glycans have a significant impact on adhesion. This finding suggests a distinct role for MUC1 glycosylation patterns in cancer cell migration and/or invasion. To decipher the molecular mechanism for the observed adhesion, we investigated the conformation of the glycosylated MUC1 peptides by NMR spectroscopy. These experiments revealed only minor differences in peptide structure, therefore clearly relating the adhesion behaviour to the type and number of glycans linked to MUC1.


Subject(s)
Glycopeptides , Mucin-1 , Mucin-1/chemistry , Glycopeptides/chemistry , Glycosylation , Cell Adhesion , Peptides/chemistry , Proteins/metabolism , Polysaccharides
18.
Expert Opin Ther Pat ; 33(3): 169-178, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36912026

ABSTRACT

INTRODUCTION: Eradication of malaria remains one of the main aims of medicine. Despite progress in malaria treatment, mortality rate remains high, especially in the poorest parts of the world. Therefore, prevention through vaccines is fundamental and recent approval of the first effective vaccine reinforced this assumption. However, since the parasite cycle is composed of three stages, different types of vaccine targeting stage-specific antigens shall be developed. Moreover, the beneficial effect on vaccinated subjects can be tuned using compositions targeting different stages. AREA COVERED: We analyzed the malaria vaccine patent landscape describing the most significant patents published after 2016, classified according to the different parasite stages targeted focusing on selected protein antigens or epitopes. We searched 'malaria vaccine' on Patentscope and Espacenet. EXPERT OPINION: Pre-erythrocytic vaccines were boosted by RTS,S approval, but its partial efficacy, limited to sporozoites, calls for compositions active against other disease stages. In particular, multi-antigen vaccines could be more effective than single-stage ones, as they would activate an immune response similar to that acquired in endemic regions. Furthermore, vaccine storage is another factor to be considered given the climate of the areas where malaria is widespread. More advanced technologies can lead to more effective and safer vaccines.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Patents as Topic , Malaria/prevention & control , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum
19.
J Pept Sci ; 29(7): e3475, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36597597

ABSTRACT

Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed ß-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.


Subject(s)
Multiple Sclerosis , Humans , Autoantigens , Adhesins, Bacterial , Myelin Sheath/metabolism , Haemophilus influenzae , Autoantibodies , Myelin Proteins , Peptides , Myelin-Oligodendrocyte Glycoprotein
20.
Org Biomol Chem ; 21(8): 1674-1679, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36385318

ABSTRACT

Peptide fragments of glycoproteins containing multiple N-glycosylated sites are essential biochemical tools not only to investigate protein-protein interactions but also to develop glycopeptide-based diagnostics and immunotherapy. However, solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites is hampered by difficult couplings, which results in a substantial drop in yield. To increase the final yield, large amounts of reagents but also time-consuming steps are required. Therefore, we propose herein to utilize heating and stirring in combination with low-loading solid supports to set up an accelerated route to obtain, by an efficient High-Temperature Fast Stirring Peptide Synthesis (HTFS-PS), glycopeptides containing multiple N-glycosylated sites using equimolar excess of the precious glycosylated building blocks.


Subject(s)
Glycopeptides , Solid-Phase Synthesis Techniques , Glycosylation , Glycoproteins
SELECTION OF CITATIONS
SEARCH DETAIL