Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 368: 128285, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368491

ABSTRACT

Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4-8.0 g TSS/L/d) and protein productivities (1.9-3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.


Subject(s)
Bioreactors , Wastewater , Biomass , Anaerobiosis , Sewage/chemistry , Bacteria, Aerobic , Hydrogen-Ion Concentration , Waste Disposal, Fluid
2.
Bioresour Technol ; 307: 123242, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32248065

ABSTRACT

Consortia of aerobic heterotrophic bacteria (AHB) have potential as sustainable microbial protein (MP) source in animal feed. A systematic screening of the nutritional value and safety of AHB biomass from full-scale activated sludge plants from 25 companies in the food sector was performed. The variable protein content (21-49%) was positively correlated with biomass-specific nitrogen loading rate and negatively with sludge retention time (SRT). Compared to the essential amino acid profile of soybean meal protein, AHB displayed an overall surplus of threonine and valine, and deficits in cysteine, histidine, lysine and phenylalanine. Histidine was positively correlated with bCOD/PO43- in the influent and valine, isoleucine and threonine with SRT. Most AHB samples were safe apropos heavy metals, polycyclic aromatic hydrocarbons and antibiotics. Some pesticides exceeded regulatory limits, necessitating mitigation. This work highlighted that the food sector can provide high-quality MP, while retrofitting existing activated sludge plants towards high-rate processes can increase AHB quality and productivity.


Subject(s)
Bioreactors , Sewage , Animals , Bacteria, Aerobic , Beverages , Heterotrophic Processes , Waste Disposal, Fluid
3.
Microb Biotechnol ; 13(5): 1377-1389, 2020 09.
Article in English | MEDLINE | ID: mdl-32180337

ABSTRACT

The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis ('Spirulina') and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as bio-based fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.


Subject(s)
Fertilizers , Soil , Agriculture , Biomass , Fertilization , Nitrogen/analysis , Spirulina
4.
Water Res ; 171: 115406, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31881500

ABSTRACT

Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8-88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8-12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.


Subject(s)
Solanum tuberosum , Wastewater , Animals , Ecosystem , Environment , Glycine max
5.
Environ Sci Technol ; 49(20): 12450-6, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26389714

ABSTRACT

This study demonstrates that microalgae can effectively recover all P and N from anaerobically treated black water (toilet wastewater). Thus, enabling the removal of nutrients from the black water and the generation of a valuable algae product in one step. Screening experiments with green microalgae and cyanobacteria showed that all tested green microalgae species successfully grew on anaerobically treated black water. In a subsequent controlled experiment in flat-panel photobioreactors, Chlorella sorokiniana was able to remove 100% of the phosphorus and nitrogen from the medium. Phosphorus was depleted within 4 days while nitrogen took 12 days to reach depletion. The phosphorus and nitrogen removal rates during the initial linear growth phase were 17 and 122 mg·L(-1)·d(-1), respectively. After this initial phase, the phosphorus was depleted. The nitrogen removal rate continued to decrease in the second phase, resulting in an overall removal rate of 80 mg·L(-1)·d(-1). The biomass concentration at the end of the experiment was 11.5 g·L(-1), with a P content of approximately 1% and a N content of 7.6%. This high algal biomass concentration, together with a relatively short P recovery time, is a promising finding for future post-treatment of black water while gaining valuable algal biomass for further application.


Subject(s)
Chlorella , Microalgae , Nitrogen/metabolism , Phosphorus/metabolism , Waste Disposal, Fluid/methods , Anaerobiosis , Biomass , Chlorella/growth & development , Chlorella/metabolism , Microalgae/growth & development , Microalgae/metabolism , Photobioreactors , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...