Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(16): 160502, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099205

ABSTRACT

We report on the first experimental realization of the controlled-not (cnot) quantum gate and entanglement for two individual atoms of different isotopes and demonstrate a negligible cross talk between two atom qubits. The experiment is based on a strong Rydberg blockade for ^{87}Rb and ^{85}Rb atoms confined in two single-atom optical traps separated by 3.8 µm. The raw fidelities of the cnot gate and entanglement are 0.73±0.01 and 0.59±0.03, respectively, without any corrections for atom loss or trace loss. Our work has applications for simulations of many-body systems with multispecies interactions, for quantum computing, and for quantum metrology.

2.
Nat Commun ; 6: 7803, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26199051

ABSTRACT

Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of (87)Rb and (85)Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates.

3.
Phys Rev Lett ; 115(2): 025302, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26207476

ABSTRACT

We present a shortcut to adiabaticity (STA) protocol applicable to 3D unitary Fermi gases and 2D weakly interacting Bose gases containing defects such as vortices or solitons. Our protocol relies on a new class of exact scaling solutions in the presence of anisotropic time-dependent harmonic traps. It connects stationary states in initial and final traps having the same frequency ratios. The resulting scaling laws exhibit a universal form and also apply to the classical Boltzmann gas. The duration of the STA can be made very short so as to realize a quantum quench from one stationary state to another. When applied to an anisotropically trapped superfluid gas, the STA conserves the shape of the quantum defects hosted by the cloud, thereby acting like a perfect microscope, which sharply contrasts with their strong distortion occurring during the free expansion of the cloud.

4.
Phys Rev Lett ; 113(17): 170601, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25379907

ABSTRACT

We analyze theoretically the transport properties of a weakly interacting ultracold Bose gas enclosed in two reservoirs connected by a constriction. We assume that the transport of the superfluid part is hydrodynamic, and we describe the ballistic transport of the normal part using the Landauer-Büttiker formalism. Modeling the coupled evolution of the phase, atom number, and temperature mismatches between the reservoirs, we predict that Helmholtz (plasma) oscillations can be observed at nonzero temperatures below Tc. We show that, because of its strong compressibility, the Bose gas is characterized by a fast thermalization compared to the damping time for plasma oscillations, accompanied by a fast transfer of the normal component. This fast thermalization also affects the gas above Tc, where we present a comparison to the ideal fermionic case. Moreover, we outline the possible realization of a superleak through the inclusion of a disordered potential.

5.
Phys Rev Lett ; 109(8): 084501, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-23002747

ABSTRACT

We consider a uniform superfluid confined in two compartments connected by a superleak and initially held at equal temperatures. If one of the two compartments is heated, a fraction of the superfluid will flow through the superleak. We show that, under certain thermodynamic conditions, the atoms flow from the hotter to the colder compartment, contrary to what happens in the fountain effect observed in superfluid helium. This flow causes quantum degeneracy to increase in the colder compartment. In superfluid helium, this novel thermomechanical effect takes place in the phonon regime of very low temperatures. In dilute quantum gases, it occurs at all temperatures below T(c). The increase in quantum degeneracy reachable through the adiabatic displacement of the wall separating the two compartments is also discussed.

6.
Opt Express ; 16(20): 16005-12, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18825239

ABSTRACT

We report a prediction for the delay measured in an optical tunneling experiment using Hong-Ou-Mandel (HOM) interference, taking into account the Goos-Hänchen shift generalized to frustrated total internal reflection situations. We precisely state assumptions under which the tunneling delay measured by an HOM interferometer can be calculated. We show that, under these assumptions, the measured delay is the group delay, and that it is apparently 'superluminal' for sufficiently thick air gaps. We also show how an HOM signal with multiple minima can be obtained, and that the shape of such a signal is not appreciably affected by the presence of the optical tunneling zone, thus ruling out the explanation of the anomalously short tunneling delays in terms of a reshaping of the wavepacket as it goes through the tunneling zone. Finally, we compare the predicted tunneling delay to a relevant classical delay and conclude that our predictions involve no non-causal effect.


Subject(s)
Interferometry/instrumentation , Interferometry/methods , Optics and Photonics , Air , Equipment Design/methods , Fiber Optic Technology/methods , Models, Statistical , Photons , Refractometry/methods , Signal Processing, Computer-Assisted , Time Factors
7.
Phys Rev Lett ; 99(13): 130407, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17930564

ABSTRACT

We show that the system of weakly bound molecules of heavy and light fermionic atoms is characterized by a long-range intermolecular repulsion and can undergo a gas-crystal quantum transition if the mass ratio exceeds a critical value. For the critical mass ratio above 100 obtained in our calculations, this crystalline order can be observed as a superlattice in an optical lattice for heavy atoms with a small filling factor. We also find that this novel system is sufficiently stable with respect to molecular relaxation into deep bound states and to the process of trimer formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...