Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 764: 497-507, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26169564

ABSTRACT

Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development.


Subject(s)
Anticonvulsants/pharmacology , Benzodiazepines/pharmacology , GABA-A Receptor Antagonists/pharmacology , Nootropic Agents/pharmacology , Receptors, GABA-A/drug effects , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/metabolism , Anticonvulsants/toxicity , Behavior, Animal/drug effects , Benzodiazepines/chemical synthesis , Benzodiazepines/metabolism , Benzodiazepines/toxicity , Blood-Brain Barrier/metabolism , Capillary Permeability , Disease Models, Animal , Dose-Response Relationship, Drug , GABA-A Receptor Antagonists/chemical synthesis , GABA-A Receptor Antagonists/metabolism , GABA-A Receptor Antagonists/toxicity , HEK293 Cells , Humans , Male , Mice , Molecular Structure , Motor Activity/drug effects , Nootropic Agents/chemical synthesis , Nootropic Agents/metabolism , Nootropic Agents/toxicity , Pentylenetetrazole , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Recognition, Psychology/drug effects , Seizures/chemically induced , Seizures/prevention & control , Structure-Activity Relationship , Xenopus laevis
2.
Biochem Biophys Res Commun ; 355(2): 568-74, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17306762

ABSTRACT

This study was designed to explore the effect of P2X7 receptor (P2X7R) activation on the expression of p38 MAP kinase (p38 MAPK) enzyme in hippocampal slices of wild-type (WT) and P2X7R(-/-) mice using the Western blot technique and to clarify its role in P2X7 receptor mediated [(3)H]glutamate release. ATP (1 mM) and the P2X7R agonist BzATP (100 microM) significantly increased p38 MAPK phosphorylation in WT mice, and these effects were absent in the hippocampal slices of P2X7R(-/-) mice. Both ATP- and BzATP-induced p38 MAPK phosphorylations were sensitive to the p38 MAP kinase inhibitor, SB203580 (1 microM). ATP elicited [(3)H]glutamate release from hippocampal slices, which was significantly attenuated by SB203580 (1 microM) but not by the extracellular signal-regulated kinase (ERK1/2) inhibitor, PD098095 (10 microM). Consequently, we suggest that P2X7Rs and p38 MAPK are involved in the stimulatory effect of ATP on glutamate release in the hippocampal slices of WT mice.


Subject(s)
Hippocampus/enzymology , Receptors, Purinergic P2/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Blotting, Western , Flavonoids/pharmacology , Glutamic Acid/metabolism , Imidazoles/pharmacology , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Purinergic P2 Receptor Agonists , Pyridines/pharmacology , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X7 , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
3.
J Pharmacol Exp Ther ; 310(3): 973-80, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15084650

ABSTRACT

This study was designed to test the hypothesis of whether activation of presynaptic P2X receptor-gated ion channels elicits noradrenaline release from central catecholaminergic terminals. ATP, alpha,beta-methylene-adenosine 5'-triphosphate (alpha,beta-methyleneATP), and ADP elicited concentration-dependent [3H]noradrenaline outflow from superfused rat hippocampal slices with the following rank order of agonist potency: alpha,beta-methyleneATP > ATP > ADP. Among P2 receptor antagonists, pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (30 microM), 4,4',4",4"'-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonylimino))]tetrakis-1,3-benzenedisulfonic acid (100 nM), and 8,8'-[carbonybis(imino-3,1-phenylenecarbonylimino)]bis1,3,5-naphthalenetrisulphonic acid (10 microM) significantly inhibited the outflow of [3H]noradrenaline, evoked by ATP, whereas Brilliant Blue G (100 nM), 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate tetraammonium (10 microM), the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (250 nM), and the A2A receptor antagonist 3,7-dimethyl-1-propargylxanthine (250 nM) were ineffective. Pretreatment with the Gi protein inhibitor pertussis toxin (2.5 microg/ml) did not change the effect of ATP on [3H]noradrenaline outflow. In contrast, a decrease in extracellular pH from 7.4 to 6.6 significantly attenuated the response by ATP. When extracellular Na+ was replaced by choline chloride and in the presence of the noradrenaline uptake inhibitor desipramine (10 microM), the ATP-evoked [3H]noradrenaline outflow was almost completely abolished, indicating that its underlying mechanism is the sodium-dependent reversal of the noradrenaline transporter. Reverse transcription-polymerase chain reaction analysis revealed that mRNA encoding P2X1, P2X2, P2X3, P2X4, P2X6, P2X7 and P2Y1 receptor subunits were expressed in the brainstem containing catecholaminergic nuclei projecting to the hippocampus, whereas mRNA encoding P2X5, P2Y2, P2Y4, and P2Y6 receptors were absent. Taken together, these results indicate that noradrenergic terminals of the rat hippocampus are equipped with presynaptic facilitatory P2X receptors, displaying a pharmacological profile similar to homomeric P2X1 and P2X3 receptors.


Subject(s)
Hippocampus/metabolism , Norepinephrine/metabolism , Receptors, Purinergic P2/metabolism , Animals , Chromatography, High Pressure Liquid , Male , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X , Reverse Transcriptase Polymerase Chain Reaction
4.
Neuroreport ; 15(15): 2387-91, 2004 Oct 25.
Article in English | MEDLINE | ID: mdl-15640761

ABSTRACT

In this study we revealed the participation of P2X(7) receptors in the modulation of electrical stimulation and ATP-evoked GABA and glutamate release from mouse hippocampal slices. Whereas the uptake of radioactivity was not changed, the electrical stimulation-induced release of both [(3)H]glutamate and [(3)H]GABA was decreased in the hippocampus of P2X(7) receptor-deficient mice. ATP (10 mM) elicited [(3)H]glutamate and [(3)H]GABA efflux in wild-type mice, which was inhibited by the non-selective P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid tetrasodium (30 microM) and the P2X(7)-selective antagonist Brilliant Blue G (1 microM). The ATP-evoked release of both GABA and glutamate was virtually absent in the knockout mice. These results indicate that ATP facilitates GABA and glutamate release in the hippocampus by a mechanism involving P2X(7)R.


Subject(s)
Adenosine Triphosphate/pharmacology , Glutamic Acid/metabolism , Hippocampus/drug effects , Pyridoxal Phosphate/analogs & derivatives , Receptors, Purinergic P2/deficiency , gamma-Aminobutyric Acid/metabolism , Analysis of Variance , Animals , Benzenesulfonates/pharmacology , Electric Stimulation/methods , Hippocampus/metabolism , Hippocampus/radiation effects , In Vitro Techniques , Mice , Mice, Knockout , Platelet Aggregation Inhibitors/pharmacology , Pyridoxal Phosphate/pharmacology , RNA, Messenger/biosynthesis , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X7 , Reverse Transcriptase Polymerase Chain Reaction/methods , Tritium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...