Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628037

ABSTRACT

The consumption of marine fishes has a positive effect on a consumer's health; however, it poses a potential risk due to their level of heavy metals in their body. Heavy metals can be naturally found in the environment, but their concentration can be increased with anthropogenic activities. Samples of tuna (Thunnus albacares) were collected at a fishery market. The potentially toxic elements (arsenic, cadmium, lead, and mercury) were determined with a validated method in the flesh of fish using inductively plasma optical emission spectrometry after microwave digestion. Generally, the average concentration of them was below the official limit values regulated by the European Union, except for lead. Based on the concentrations of arsenic (inorganic derivates: 0.05 ± 0.02 mg/kg) and cadmium (0.03 ± 0.01 mg/kg) in the tuna fish samples, and their calculated EDI values (As: 0.03-0.09 µg/kg/day; Cd: 0.05-0.07 µg/kg/day), the investigated food could be declared safe for human consumption. Generally, mercury content was below the official regulated limit, and the calculated EDI value was below the dietary reference value (0.3 µg/kg/day) in most of the samples (90%), exceeding it only in two samples (0.69 and 0.82 µg/kg/day); thus, they may not be harmful to the consumer. The concentration of lead above the official maximum limit (0.30 mg/kg) in 40% of tuna samples (0.30-1.59 mg/kg), as well as the exceeding of the dietary reference value for lead (adult: 0.16 µg/kg/day; children: 0.26 µg/kg/day) based on the calculated EDI values (0.28-1.49 µg/kg/day), draw attention to the importance of environmental pollution and the protection of consumers' health.

2.
Dalton Trans ; 51(45): 17241-17254, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36314721

ABSTRACT

Copper(II) complexes of HPH-NH2 (L1) and HPHPY-NH2 (L2) peptides have been studied as small molecular models of lytic polysaccharide monooxygenases by pH-potentiometry and UV-vis, CD and EPR spectroscopy. The coordination properties of these ligands are fundamentally different from those of other non-protected N-terminal HXH-sequences concerning the metal binding ability of amide nitrogens. The proline units prevent the formation of fused chelates with the participation of amide nitrogens; therefore, instead of ATCUN-type {NH2,2N-,Nim} coordination, dimer complexes (Cu2HxL2, where x = -1, -2, and -3 for L1 and 1, 0, and -1 for L2) are formed in equimolar systems above pH 5. Using H2O2 as the oxidant and PNPG as the activated substrate, these dimer complexes were proved to be relevant functional models of LPMOs, even at neutral pH. Although the tyrosine residue in L2 participates in the coordination at pH 7-9.6, it does not seem to play a role in the oxidation process. In the presence of H2O2, the dimer complexes partially dissociate to form mononuclear hydroperoxo complexes, which are stable for 1-2 hours in equimolar concentrations of H2O2. On the other hand, with excess H2O2 both their formation and their decomposition are faster. The decay of (hydro)peroxo complexes, after longer reaction times, results in the evolution of dioxygen bubbles and the formation of Cu(I) (probably through catalytic disproportionation). However, in the presence of PNPG, the formation of dioxygen bubbles was not observed. Therefore, we assumed that the formed Cu(I) complexes bind H2O2 and enter into a similar catalytic cycle as suggested recently for native LPMOs.


Subject(s)
Mixed Function Oxygenases , Models, Chemical , Hydrogen Peroxide , Peptides/metabolism , Copper/chemistry , Polysaccharides , Hydrogen-Ion Concentration , Amides , Oxygen
3.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34445319

ABSTRACT

Anticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects to ACP action and to therapeutic developments. Here we investigated natural helical ACPs, Lasioglossin LL-III, Macropin 1, Temporin-La, FK-16, and LL-37, on model liposomes, and also on extracellular vesicles (EVs), with an outer leaflet composition similar to cancer cells. The combined simulations and experiments identified three distinct binding modes to the membranes. Firstly, a highly helical structure, lying mainly on the membrane surface; secondly, a similar, yet only partially helical structure with disordered regions; and thirdly, a helical monomeric form with a non-inserted perpendicular orientation relative to the membrane surface. The latter allows large swings of the helix while the N-terminal is anchored to the headgroup region. These results indicate that subtle differences in sequence and charge can result in altered binding modes. The first two modes could be part of the well-known carpet model mechanism, whereas the newly identified third mode could be an intermediate state, existing prior to membrane insertion.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antineoplastic Agents/chemistry , Bee Venoms/chemistry , Cell Membrane/metabolism , Amino Acid Motifs , Antimicrobial Cationic Peptides/metabolism , Antineoplastic Agents/metabolism , Bee Venoms/metabolism , Extracellular Vesicles/metabolism , Humans , Protein Binding , Protein Domains , Cathelicidins
4.
Biochim Biophys Acta Biomembr ; 1863(10): 183665, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34097861

ABSTRACT

We report a theoretical and experimental study on a new series of small-sized antibacterial peptides. Synthesis and bioassays for these peptides are reported here. In addition, we evaluated different physicochemical parameters that modulate antimicrobial activity (charge, secondary structure, amphipathicity, hydrophobicity and polarity). We also performed molecular dynamic simulations to assess the interaction between these peptides and their molecular target (the membrane). Biophysical characterization of the peptides was carried out with different techniques, such as circular dichroism (CD), linear dichroism (LD), infrared spectroscopy (IR), dynamic light scattering (DLS), fluorescence spectroscopy and TEM studies using model systems (liposomes) for mammalian and bacterial membranes. The results of this study allow us to draw important conclusions on three different aspects. Theoretical and experimental results indicate that small-sized peptides have a particular mechanism of action that is different to that of large peptides. These results provide additional support for a previously proposed four-step mechanism of action. The possible pharmacophoric requirement for these small-sized peptides is discussed. Furthermore, our results indicate that a net +4 charge is the adequate for 9 amino acid long peptides to produce antibacterial activity. The information reported here is very important for designing new antibacterial peptides with these structural characteristics.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...