Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37372637

ABSTRACT

Greece has a long tradition in cheesemaking, with 22 cheeses registered as protected designation of origin (PDO), 1 as protected geographical indication (PGI), and 1 applied for PGI. Several other cheeses are produced locally without any registration, which significantly contribute to the local economy. The present study investigated the composition (moisture, fat, salt, ash, and protein content), color parameters, and oxidative stability of cheeses that do not have a PDO/PGI certification, purchased from a Greek market. Milk and cheese types were correctly assigned for 62.8 and 82.1 % of samples, respectively, through discriminant analysis. The most important factors for milk type discrimination were L, a and b color attributes, salt, ash, fat-in-dry-matter, moisture-in-non-fat-substance, salt-in-moisture, and malondialdehyde contents, whereas a and b, and moisture, ash, fat, moisture-in-non-fat substance contents, and pH were the most influential characteristics for sample discrimination according to cheese type. A plausible explanation may be the differences in milk chemical composition between three animal species, namely cows, sheep, and goats and for the manufacture procedure and ripening. This is the very first report on the proximate analysis of these, largely ignored, chesses aiming to simulate interest for further study and production valorization.

2.
Foods ; 11(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35159567

ABSTRACT

In the present work, a fresh spreadable cheese from ovine milk with or without (control) fortification with ß-glucan was manufactured. ß-Glucan was extracted from the mushroom Pleurotus ostreatus and its concentration in the cheese was 0.4% (w/w). The composition, biochemical, and sensory properties of the cheeses during 21 days of storage were determined. At the end of storage, cheese fortified with beta-glucan had 75.26% moisture content, 10.30% fat, 1.71% salt, and 8.50% protein. Generally, the addition of ß-glucan at this concentration did not significantly affect the composition, color, and viscosity measurements or the level of proteolysis and lipolysis and the antioxidant activity of the cheeses. However, cheese fortified with ß-glucan showed a higher moisture content than control cheese on the 1st and 21st day of storage while the levels of proteolysis and the sensory properties of the cheeses were unaffected. During the sensory evaluation, panelists evaluated cheese with ß-glucan with higher scores regarding the flavor characteristic compared to control cheese. The major free fatty acid was acetic acid in both cheeses and its concentration was higher in cheese with ß-glucan. The results of the present study could be used by the dairy industry for manufacturing new products with improved health benefits.

3.
Polymers (Basel) ; 12(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182804

ABSTRACT

ß-Glucan, isolated from the mushroom Pleurotus ostreatus, at a concentration of 0.4%, was used in the manufacture of reduced-fat white-brined cheese from sheep milk. Control reduced-fat cheese was also produced from the same milk without the addition of ß-glucan. The resultant cheeses were examined for their physicochemical characteristics, color and textural properties, and level of proteolysis and lipolysis. Furthermore, cheeses were evaluated organoleptically. In general, there were no statistical differences in the physicochemical characteristics and proteolysis levels found between both cheeses. The addition of ß-glucan improved textural properties, and the cheeses received favorable grades for all the organoleptic characteristics. There were no flavor defects (such as a bitter taste) described by the panellists in this study. Generally, the addition of ß-glucan did not significantly affect total free fatty acid content; however, at 180 days of ripening and storage, cheeses with the addition of ß-glucan had a higher (p < 0.05) content than cheeses without ß-glucan. The major fatty acids were acetic acid and capric acid.

4.
Food Microbiol ; 64: 145-154, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28213019

ABSTRACT

Traditional Greek cheeses are often produced from thermized milk (TM) with the use of commercial starter cultures (CSCs), which may not inhibit growth of Listeria monocytogenes completely. Therefore, this study evaluated the behavior of an artificial L. monocytogenes contamination in commercially TM (63 °C; 30 s) inoculated with a CSC plus Lactococcus lactis subsp. lactis M104 and/or Enterococcus faecium KE82, two indigenous strains producing nisin A and enterocin A and B, respectively. Inoculation treatments included TM with the CSC only, and TM without the CSC but with strain M104 alone, or combined with strain KE82. All treatments were incubated at 37 °C for 6 h followed by 66 h at 18 °C. L. monocytogenes grew by 0.66-1.24 log cfu/ml at 37 °C, whereas its further growth at 18 °C was retarded, suppressed, or accompanied by different inactivation rates, depending on each TM treatment. Strain M104 caused the greatest inactivation, whereas the CSC per se was the least effective treatment. Strain KE82 assisted the CSC in controlling pathogen growth at 37 °C, whereas both reduced the nisin A-mediated antilisterial activity of strain M104. Overall, the most 'balanced' treatment against L. monocytogenes was CSC+M104+KE82. Hence, this starter/co-starter combination may be utilized in traditional Greek cheese technologies.


Subject(s)
Bacteriocins/biosynthesis , Enterococcus faecium/growth & development , Lactococcus lactis/growth & development , Listeria monocytogenes/growth & development , Microbial Interactions , Milk/microbiology , Animals , Bacterial Load , Bacteriocins/pharmacology , Cheese/microbiology , Enterococcus faecium/physiology , Food Contamination/prevention & control , Food Preservation , Goats , Greece , Hot Temperature , Lactococcus lactis/physiology , Listeria monocytogenes/physiology , Milk/chemistry , Nisin/biosynthesis
5.
Food Technol Biotechnol ; 55(4): 496-510, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29540984

ABSTRACT

The microbiological quality of and changes in the main physicochemical parameters, together with the evolution of proteolysis, lipolysis and volatile profiles of soft Xinotyri, a traditional Greek acid-curd cheese (pH≈4.4, moisture 65%, salt 1%) made from raw (RMC) or pasteurized (PMC) goat's milk without starters, were evaluated during aerobic storage at 4 oC for 60 days. No statistically significant differences between the total nitrogen (TN) and nitrogen fraction (% of TN) contents, the degradation of intact αs- or ß-caseins, total free amino acid (FAA) contents, and the ratio of hydrophilic and hydrophobic peptides in the water-soluble fraction of RMC and PMC were found. Threonine, alanine and lysine were the principal FAAs. Oleic, palmitic, capric and caprylic acids, and ethyl hexonate, ethyl octanoate, ethyl decanoate, ethanol, 3-methyl butanol, phenyl ethyl alcohol and acetone were the most abundant free fatty acids and volatile compounds, respectively. Cheese lipolysis evolved slowly at 4 oC, and milk pasteurization had no significant effect on it. Mesophilic lactic acid bacteria (LAB) were predominant in fresh cheese samples. PMC samples had significantly lower levels of enterococci and enterobacteria than RMC samples, while yeasts grew at similar levels during storage at 4 oC. All cheese samples (25 g) were free of Salmonella and Listeria monocytogenes. Coagulase--positive staphylococci exceeded the 5-log safety threshold in fresh RMC samples, whereas they were suppressed (<100 CFU/g) in all PMC samples. Consequently, pasteurization of raw goat milk's and utilization of commercially defined or natural mesophilic LAB starters are recommended for standardizing the biochemical, microbial and safety qualities of fresh soft Xinotyri cheese.

6.
J Food Prot ; 77(10): 1703-14, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25285487

ABSTRACT

This study was conducted to evaluate the behavior of Staphylococcus aureus during processing, ripening, and storage of traditional Greek Graviera cheese in accordance with European Union Regulation 1441/2007 for coagulase-positive staphylococci in thermized milk cheeses. Lactococcus lactis subsp. cremoris M104, a wild, novel nisin A-producing (NisA+) strain, also was evaluated as an antistaphylococcal adjunct. A three-strain cocktail of enterotoxigenic (Ent+) S. aureus increased by approximately 2 log CFU/ml when co-inoculated (at approximately 3 log CFU/ml) in thermized Graviera cheese milk (TGCM; 63°C for 30 s) with commercial starter culture (CSC) and/or strain M104 at approximately 6 log CFU/ml and then incubated at 37°C for 3 h. However, after 6 h at 37°C, significant retarding effects on S. aureus growth were noted in the order TGCM + M104 > TGCM + CSC = TGCM + CSC + M104 > TGCM. Additional incubation of TGCM cultures at 18°C for 66 h resulted in a 1.2-log reduction (P < 0.05) of S. aureus populations in TGCM + M104. The Ent + S. aureus cocktail did not grow but survived during ripening and storage when inoculated (at approximately 3 log CFU/g) postcooking into Graviera mini cheeses prepared from TGCM + CSC or TGCM + CSC + M104, ripened at 18°C and 90% relative humidity for 20 days, and stored at 4°C in vacuum packages for 2 months. A rapid 10-fold decrease (P < 0.05) in S. aureus populations occurred within the first 24 h of cheese fermentation. Reductions of S. aureus were greater by approximately 0.4 log CFU/g in CSC + M104 than in CSC only cheeses, concomitantly with the presence of NisA + M104 colonies and nisin-encoding genes in the CSC plus M104 cheeses and their corresponding microbial consortia only. A high level of selective survival of a naturally nisin-resistant EntC z S. aureus strain from the cocktail was noted in CSC + M104 cheeses and in coculture with the NisA + M104 strain in M-17 broth. In conclusion, although S. aureus growth inhibition is assured during Graviera cheese ripening, early growth of the pathogen during milk curdling and curd cooking operations may occur. Nisin-resistant S. aureus strains that may contaminate Graviera cheese milks postthermally may be difficult to control even by the application of the NisA + L. lactis subsp. cremoris strain M104 as a bioprotective adjunct culture.


Subject(s)
Cheese/microbiology , Food Microbiology/methods , Lactococcus lactis , Milk/microbiology , Nisin/chemistry , Staphylococcus aureus/growth & development , Animals , Cattle , Coculture Techniques , Colony Count, Microbial , Fermentation , Food Microbiology/standards , Hydrogen-Ion Concentration , Temperature , Vacuum
7.
J Food Prot ; 73(7): 1294-303, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20615342

ABSTRACT

The microflora of four batches of traditional Greek Graviera cheese was studied at 5 weeks of ripening, and 200 lactic acid bacteria (LAB) isolates were phenotypically characterized and screened for antilisterial bacteriocins. The cheeses were also analyzed for organic acids by high-performance liquid chromatography and for the potential presence of 25 known LAB bacteriocin genes directly in cheese and their microbial consortia by PCR. All batches were safe according to the European Union regulatory criteria for Listeria monocytogenes, Salmonella, enterobacteria, and coagulase-positive staphylococci. The cheese flora was dominated by nonstarter Lactobacillus casei/paracasei (67.5%) and Lactobacillus plantarum (16.3%) strains, whereas few Streptococcus thermophilus (3.8%), Lactococcus lactis subsp. lactis (0.6%), and Leuconostoc (1.9%) organisms were present. Enterococcus faecium (9.4%) and Enterococcus durans (0.6%) were isolated among the dominant LAB from two batches; however, enterococci were present in all batches at 10- to 100-fold lower populations than mesophilic lactobacilli. Sixteen E. faecium isolates produced antilisterial enterocins. In accordance, enterocin B gene was detectable in all cheeses and enterocin P gene was present in one cheese, whereas the consortia of all cheeses contained at least two of the enterocin A, B, P, 31, L50A, and L50B genes. Plantaricin A gene was also amplified from all cheeses. Mean concentrations of lactic, acetic, citric, and propionic acids in the ripened cheeses exceeded 1.5% in total, of which approximately 0.9% was lactate. Thus, organic acid contents constitute an important hurdle factor for inhibiting growth of pathogens in traditional Graviera cheese products, with LAB bacteriocins, mainly enterocins, potentially contributing to increased cheese safety.


Subject(s)
Bacteriocins/genetics , Cheese/microbiology , Consumer Product Safety , Food Microbiology , Lactobacillus/growth & development , Bacteriocins/biosynthesis , Bacteriocins/isolation & purification , Cheese/standards , Enterococcus/classification , Enterococcus/growth & development , Enterococcus/metabolism , Greece , Humans , Lactobacillaceae/classification , Lactobacillaceae/growth & development , Lactobacillaceae/metabolism , Lactobacillus/classification , Lactobacillus/metabolism , Listeria monocytogenes/growth & development , Microbial Viability
8.
Sci Total Environ ; 372(1): 100-8, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-16959300

ABSTRACT

The total selenium content of foods purchased from the North West part of Greece was determined using hydride generation atomic fluorescence spectroscopy. The results of this study were within the range from other countries. The overall mean average of selenium concentration of the foods examined, in decreasing order, was found in sesame seeds (783.1 ng g(-1)), fish (246 ng g(-1)), legumes (162.5 ng g(-1)), eggs (123 ng g(-1)), bread (91.9 ng g(-1)), meat (71.7 ng g(-1)), cheese (69.8 ng g(-1)), yoghurt (23.6 ng g(-1)), nuts (19.6 ng g(-1)), milk (15.4 ng g(-1)), vegetables (6.5 ng g(-1)) and fruits (3.4 ng g(-1)). Considering the average daily individual consumption of these foods by Greeks, the average daily dietary intake of selenium supplied by this source is 39.3 microg per capita.


Subject(s)
Selenium/analysis , Diet , Food Analysis , Greece , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...