Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894317

ABSTRACT

BACKGROUND: Despite recent advances in epithelial ovarian carcinoma (EOC) treatment, its recurrence and mortality rates have not improved significantly. DNA hypermethylation has generally been associated with an ominous prognosis and chemotherapy resistance, but the role of DNA methyltransferases (DNMTs) in EOC remains to be investigated. METHODS: In the current study, we systematically retrieved gene expression data from patients with EOC and studied the immunohistochemical expression of DNMTs in 108 primary and 26 relapsed tumors. RESULTS: Our results showed that the DNMT1, DNMT3A, DNMT3B and DNMT3L RNA levels were higher and the DNMT2 level was lower in tumors compared to non-neoplastic tissue, and DNMT3A and DNMT2 expression decreased from Stage-II to Stage-IV carcinomas. The proteomic data also suggested that the DNMT1 and DNMT3A levels were increased in the tumors. Similarly, the DNMT1, DNMT3A and DNMT3L protein levels were overexpressed and DNMT2 expression was reduced in high-grade carcinomas compared to non-neoplastic tissue and low-grade tumors. Moreover, DNMT1 and DNMT3L were increased in relapsed tumors compared to their primaries. The DNMT3A, DNMT1 and DNMT3B mRNA levels were correlated with overall survival. CONCLUSIONS: Our study demonstrates that DNMT1 and DNMT3L are upregulated in primary high-grade EOC and further increase in relapses, whereas DNMT3A is upregulated only in the earlier stages of cancer progression. DNMT2 downregulation highlights the presumed tumor-suppressor activity of this gene in ovarian carcinoma.

2.
Histol Histopathol ; 38(3): 287-302, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36082942

ABSTRACT

Protein arginine methylation is an understudied epigenetic mechanism catalyzed by enzymes known as Protein Methyltransferases of Arginine (PRMTs), while the opposite reaction is performed by Jumonji domain- containing protein 6 (JMJD6). There is increasing evidence that PRMTs are deregulated in prostate cancer (PCa). In this study, the expression of two PRMT members, PRMT2 and PRMT7 as well as JMJD6, a demethylase, was analyzed in PCa. Initially, we retrieved data from The Cancer Genome Atlas (TCGA) project and the Gene Expression Omnibus (GEO) database to explore the differential expression of various PRMT family members in patients with PCa and then applied immunohistochemistry in a patient cohort across the spectrum of PCa, including non-neoplastic prostate tissue and lymph node metastatic foci. The results from the TCGA analysis revealed that PRMT7, PRMT6 and PRMT3 expression increased while PRMT2, PRMT9 and JMJD6 levels decreased in the tumor compared to non-neoplastic prostate. Results from the GEO datasets were similar, albeit not identical with the TCGA results, with PRMT7 and PRMT3 being upregulated and PRMT2 and JMJD6 being downregulated in the tumor compared to non-neoplastic tissue in some of them. In addition, PRMT7 levels decreased with stage and grade progression in the TCGA analysis. In the patient cohort, both PRMTs and JMJD6 were overexpressed in PCa compared to non-neoplastic tissue, and nuclear PRMT2 and JMJD6 were upregulated in lymph node metastasis, too. PRMT7 and JMJD6 expression were upregulated with the progression of stage and JMJD6 was also increased with the elevation of grade. After androgen ablation therapy, nuclear expression of PRMT7 and JMJD6 were elevated compared to untreated tumors. PRMT2, PRMT7 and JMD6 were also correlated with markers of EMT and cell cycle regulators. Finally, our findings indicate that PRMTs and JMJD6 are involved in prostate cancer progression and revealed a potential interplay of PRMTs with EMT mediators, underscoring the need for therapeutic targeting of arginine methylation in prostate cancer.


Subject(s)
Access to Information , Prostatic Neoplasms , Humans , Male , Methylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Cell Nucleus/metabolism , Arginine/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Proteins , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
3.
J Mol Histol ; 51(4): 385-400, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32592097

ABSTRACT

Integrin-linked kinase (ILK) forms a heterotrimeric protein complex with PINCH and PARVIN (IPP) in Focal Adhesions (FAs) that acts as a signaling platform between the cell and its microenvironment regulating important cancer-related functions. We aimed to elucidate the role of ILK in lung adenocarcinoma (LUADC) focusing on a possible link with KRAS oncogene. We used immunohistochemistry on human tissue samples and KRAS-driven LUADC in mice, analysis of large scale publicly available RNA sequencing data, ILK overexpression and pharmacological inhibition as well as knockdown of KRAS in lung cancer cells. ILK, PINCH1 and PARVB (IPP) proteins are overexpressed in human LUADC and KRAS-driven LUADC in mice representing poor prognostic indicators. Genes implicated in ILK signaling are significantly enriched in KRAS-driven LUADC. Silencing of KRAS, as well as, overexpression and pharmacological inhibition of ILK in lung cancer cells provide evidence of a two-way association between ILK and KRAS. Upregulation of PINCH, PARVB and Ras suppressor-1 (RSU1) expression was demonstrated in ILK overexpressing lung cancer cells in addition to a significant positive correlation between these factors in tissue samples, while KRAS silencing downregulates IPP and RSU1. Pharmacological inhibition of ILK in KRAS mutant lung cancer cells suppresses cell growth, migration, EMT and increases sensitivity to platinum-based chemotherapy. ILK promotes an aggressive lung cancer phenotype with prognostic and therapeutic value through functions that involve KRAS, IPP complex and RSU1, rendering ILK a promising biomarker and therapeutic target in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cytoskeletal Proteins/metabolism , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factors/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Humans , Lung Neoplasms/pathology , Mice , Signal Transduction/physiology , Tumor Microenvironment/physiology , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...