Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
F1000Res ; 12: 1205, 2023.
Article in English | MEDLINE | ID: mdl-37970066

ABSTRACT

Background: Advancements in DNA sequencing technology have transformed the field of bacterial genomics, allowing for faster and more cost effective chromosome level assemblies compared to a decade ago. However, transforming raw reads into a complete genome model is a significant computational challenge due to the varying quality and quantity of data obtained from different sequencing instruments, as well as intrinsic characteristics of the genome and desired analyses. To address this issue, we have developed a set of container-based pipelines using Nextflow, offering both common workflows for inexperienced users and high levels of customization for experienced ones. Their processing strategies are adaptable based on the sequencing data type, and their modularity enables the incorporation of new components to address the community's evolving needs. Methods: These pipelines consist of three parts: quality control, de novo genome assembly, and bacterial genome annotation. In particular, the genome annotation pipeline provides a comprehensive overview of the genome, including standard gene prediction and functional inference, as well as predictions relevant to clinical applications such as virulence and resistance gene annotation, secondary metabolite detection, prophage and plasmid prediction, and more. Results: The annotation results are presented in reports, genome browsers, and a web-based application that enables users to explore and interact with the genome annotation results. Conclusions: Overall, our user-friendly pipelines offer a seamless integration of computational tools to facilitate routine bacterial genomics research. The effectiveness of these is illustrated by examining the sequencing data of a clinical sample of Klebsiella pneumoniae.


Subject(s)
Genome, Bacterial , Software , Sequence Analysis, DNA/methods , Molecular Sequence Annotation , Base Sequence
2.
Microorganisms ; 11(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37512901

ABSTRACT

The Amazonian rainforest is a hyper-diverse ecosystem in the number of species and the myriad of intertaxon relationships that are mostly understudied. In order to characterize a dominant and economically important Amazonian species, the Brazil nut tree (Bertholletia excelsa Bonpl.), at the genome level, wegenerated high-coverage long-read sequencing data from the leaves of a single individual. The genome assembly revealed an unexpected discovery: two circular contigs that could be assigned to the chromosome and a plasmid of a Pantoea stewartii strain. Comparative genomics revealed that this strain belongs to the indologenes subspecies and displays high synteny with other strains isolated from diseased leaves of the neotropical palm Bactris gasipaes Kunth. Investigation of pathogenicity-related genes revealed the absence of the entire type III secretion system gene cluster in the plasmid, which was otherwise highly similar to a plasmid from an isolate known to cause disease in Dracaena sanderiana Mast. In contrast, several genes associated with plant-growth promoting traits were detected, including genes involved in indole-3-acetic acid (IAA) production, phosphate solubilization, and biosynthesis of siderophores. In summary, we report the genome of an uncultivated P. stewartii subsp. indologenes strain associated with the Brazil nut tree and potentially a plant growth-promoting bacteria.

3.
Methods Mol Biol ; 2638: 23-36, 2023.
Article in English | MEDLINE | ID: mdl-36781633

ABSTRACT

Epigenetics can be described as heritable phenotype changes that do not involve alterations in the underlying DNA sequence. Having widespread implications in fundamental biological phenomena, there is an increased interest in characterizing epigenetic modifications and studying their functional implications. DNA methylation, particularly 5-methylcytosine (5mC), stands out as the most studied epigenetic mark and several methodologies have been created to investigate it. With the development of next-generation sequencing technologies, several approaches to DNA methylation profiling were conceived, with differences in resolution and genomic scope. Besides the gold standard whole-genome bisulfite sequencing, which is costly for population-scale studies, genomic reduced representation methods emerged as viable alternatives to investigate methylation loci. Whole-genome bisulfite sequencing provides single-base methylation resolution but is costly for population-scale studies. Genomic reduction methods emerged as viable alternatives to investigate a fraction of methylated loci. One of such approaches uses double digestion with the restriction enzymes PstI and one of the isoschizomers, MspI and HpaII, with differential sensitivity to 5mC at the restriction site. Statistical comparison of sequencing reads counts obtained from the two libraries for each sample (PstI-MspI and PstI-HpaII) is used to infer the methylation status of thousands of cytosines. Here, we describe a general overview of the technique and a computational protocol to process the generated data to provide a medium-scale inventory of methylated sites in plant genomes. The software is available at https://github.com/wendelljpereira/DArTseqMet .


Subject(s)
DNA Methylation , Genomics , Genomics/methods , Sulfites , Epigenesis, Genetic , DNA Restriction Enzymes/genetics , Sequence Analysis, DNA/methods
4.
Front Microbiol ; 12: 732324, 2021.
Article in English | MEDLINE | ID: mdl-34899623

ABSTRACT

Antimicrobial resistance (AMR) is an increasing and urgent issue for human health worldwide, as it leads to the reduction of available antibiotics to treat bacterial infections, in turn increasing hospital stays and lethality. Therefore, the study and genomic surveillance of bacterial carriers of resistance in and outside of clinical settings is of utter importance. A colony of multidrug resistant (MDR) bacteria identified as Klebsiella spp., by 16S rDNA amplicon sequencing, has been isolated from an urban lake in Brazil, during a drug-degrading bacterial prospection. Genomic analyses revealed the bacteria as Klebsiella pneumoniae species. Furthermore, the in silico Multilocus Sequence Typing (MLST) identified the genome as a new sequence type, ST5236. The search for antimicrobial resistance genes (ARGs) detected the presence of genes against beta-lactams, fosfomycin, acriflavine and efflux pumps, as well as genes for heavy metal resistance. Of particular note, an extended-spectrum beta-lactamase gene (blaCTX-M-15) has been detected in close proximity to siphoviridae genes, while a carbapenemase gene (KPC-2) has been found in an extrachromosomal contig, within a novel non-Tn4401 genetic element (NTEKPC). An extrachromosomal contig found in the V3 isolate is identical to a contig of a K. pneumoniae isolate from a nearby hospital, which indicates a putative gene flow from the hospital network into Paranoá lake. The discovery of a MDR isolate in this lake is worrisome, as the region has recently undergone periods of water scarcity causing the lake, which receives treated wastewater effluent, and is already used for recreational purposes, to be used as an environmental buffer for drinking water reuse. Altogether, our results indicate an underrepresentation of environmental K. pneumoniae among available genomes, which may hamper the understanding of the population dynamics of the species in the environment and its consequences in the spread of ARGs and virulence genes.

5.
Front Microbiol ; 12: 604031, 2021.
Article in English | MEDLINE | ID: mdl-33935984

ABSTRACT

Klebsiella variicola is mainly associated with opportunistic infections and frequently identified as Klebsiella pneumoniae. This misidentification implies a wrong epidemiology result as well as incorrect attribution to K. pneumoniae as the etiology of some severe infections. Recently, huge efforts have been made to study K. variicola, however, the biological aspects of this species are still unclear. Here we characterized five K. variicola strains initially identified as K. pneumoniae, with a Vitek-2 System and 16S rRNA sequencing. One-step multiplex polymerase chain reaction and Whole Genome Sequencing (WGS) identified them as K. variicola. Additionally, WGS analysis showed that all the strains are closely related with K. variicola genomes, forming a clustered group, apart from K. pneumoniae and K. quasipneumoniae. Multilocus sequence typing analysis showed four different sequence types (STs) among the strains and for two of them (Kv97 and Kv104) the same ST was assigned. All strains were multidrug-resistant (MDR) and three showed virulence phenotypes including invasion capacity to epithelial cells, and survival in human blood and serum. These results showed the emergence of new K. variicola clones with pathogenic potential to colonize and cause infection in different tissues. These characteristics associated with MDR strains raise great concern for human health.

6.
PLoS One ; 15(6): e0233800, 2020.
Article in English | MEDLINE | ID: mdl-32497070

ABSTRACT

Several studies suggest the relation of DNA methylation to diseases in humans and important phenotypes in plants drawing attention to this epigenetic mark as an important source of variability. In the last decades, several methodologies were developed to assess the methylation state of a genome. However, there is still a lack of affordable and precise methods for genome wide analysis in large sample size studies. Methyl sensitive double digestion MS-DArT sequencing method emerges as a promising alternative for methylation profiling. We developed a computational pipeline for the identification of DNA methylation using MS-DArT-seq data and carried out a pilot study using the Eucalyptus grandis tree sequenced for the species reference genome. Using a statistic framework as in differential expression analysis, 72,515 genomic sites were investigated and 5,846 methylated sites identified, several tissue specific, distributed along the species 11 chromosomes. We highlight a bias towards identification of DNA methylation in genic regions and the identification of 2,783 genes and 842 transposons containing methylated sites. Comparison with WGBS, DNA sequencing after treatment with bisulfite, data demonstrated a precision rate higher than 95% for our approach. The availability of a reference genome is useful for determining the genomic context of methylated sites but not imperative, making this approach suitable for any species. Our approach provides a cost effective, broad and reliable examination of DNA methylation profile on MspI/HpaII restriction sites, is fully reproducible and the source code is available on GitHub (https://github.com/wendelljpereira/ms-dart-seq).


Subject(s)
Cost-Benefit Analysis , DNA Methylation/genetics , Eucalyptus/genetics , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Plant Leaves/genetics , Sequence Analysis, DNA/methods , Trees/genetics , Chromosomes, Plant/genetics , DNA Restriction Enzymes/genetics , DNA Transposable Elements/genetics , Genes, Plant/genetics , Genotyping Techniques/economics , High-Throughput Nucleotide Sequencing/economics , Pilot Projects , Reproducibility of Results , Restriction Mapping , Sequence Analysis, DNA/economics , Sulfites/pharmacology
7.
Fungal Genet Biol ; 138: 103367, 2020 05.
Article in English | MEDLINE | ID: mdl-32198121

ABSTRACT

Filamentous fungi are well known for producing secondary metabolites applied in various industrial segments. Among these, lovastatin and itaconic acid, produced by Aspergillus terreus, have applications in the pharmaceutical and chemical industries. Lovastatin is primarily used for the control of hypercholesterolemia, while itaconic acid is a building block for the production of synthetic fibers, coating adhesives, among others. In this study, for the first time, 35 strains of Aspergillus sp. from four Brazilian culture collections were evaluated for lovastatin and itaconic acid production and compared to a reference strain, ATCC 20542. From an initial screening, the strains ATCC 20542, URM 224, URM1876, URM 5061, URM 5254, URM 5256, URM 5650, and URM 5961 were selected for genomic comparison. Among tested strains, the locus corresponding to the lovastatin genomic cluster was assembled, showing that all genes essential for lovastatin biosynthesis were present in producing URM 5961 and URM 5650 strains, with 100% and 98.5% similarity to ATCC 20542, respectively. However, in the no producing URM 1876, URM 224, URM 5254, URM 5061, and URM 5256 strains, this cluster was either fragmented or missing. Among the 35 strains evaluated for itaconic acid production in this study, only three strains had titers above 0.5 g/L, 16 strains had production below 0.5 g/L, and the remaining 18 strains had no production, with the highest production of itaconic acid observed in the URM 5254 strain with 2.2 g/L. The essential genes for itaconic acid production, mttA, cadA msfA were also mapped, where all three genes linked to itaconic acid production were found in a single contig in the assembly of each strain. In contrast to lovastatin loci, there is no correlation between the level of itaconic acid production and genetic polymorphisms in the genes associated with its biosynthesis.


Subject(s)
Aspergillus , Lovastatin , Succinates , Aspergillus/genetics , Aspergillus/metabolism , Biodiversity , Brazil , Genes, Fungal , Genetic Variation , Genome, Fungal , Lovastatin/biosynthesis , Lovastatin/genetics , Phylogeny , Succinates/metabolism
8.
Front Plant Sci ; 10: 33, 2019.
Article in English | MEDLINE | ID: mdl-30930909

ABSTRACT

Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.

9.
Article in English | MEDLINE | ID: mdl-30483479

ABSTRACT

Gti1/Pac2 transcription factors occur exclusively in fungi and their roles vary according to species, including regulating morphological transition and virulence, mating and secondary metabolism. Many of these functions are important for fungal pathogenesis. We therefore hypothesized that one of the two proteins of this family in Cryptococcus neoformans, a major pathogen of humans, would also control virulence-associated cellular processes. Elimination of this protein in C. neoformans results in reduced polysaccharide capsule expression and defective cytokinesis and growth at 37°C. The mutant loses virulence in a mouse model of cryptococcal infection and retains only partial virulence in the Galleria mellonella alternative model at 30°C. We performed RNA-Seq experiments on the mutant and found abolished transcription of genes that, in combination, are known to account for all the observed phenotypes. The protein has been named Required for cytokinesis and virulence 1 (Rcv1).


Subject(s)
Cryptococcosis/pathology , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/pathogenicity , Transcription Factors/metabolism , Animals , Cryptococcosis/microbiology , Cryptococcus neoformans/growth & development , Cytokinesis , Disease Models, Animal , Gene Deletion , Gene Expression Profiling , Lepidoptera , Mice , Polysaccharides/metabolism , Sequence Analysis, RNA , Temperature , Transcription Factors/genetics , Virulence
10.
Genome Announc ; 6(26)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29954895

ABSTRACT

A Paenibacillus elgii strain isolated from soil samples from Cerrado, Brazil, showed antimicrobial activity. Its genome sequence was acquired (GS20 FLX Titanium 454 platform) and comprises 108 contigs (N50, 198,427 bp) and 6,810 predicted sequences. Here, we shed some light on the antimicrobial genes of the strain, including a nonribosomal peptide synthetase (NRPS) module identified as part of a pelgipeptin gene cluster.

11.
Hortic Res ; 3: 16042, 2016.
Article in English | MEDLINE | ID: mdl-27610237

ABSTRACT

The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

12.
BMC Genomics ; 16: 1113, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26714854

ABSTRACT

BACKGROUND: Micro RNAs are a class of small non coding RNAs of 20-24 nucleotides transcribed as single stranded precursors from MIR gene loci. Initially described as post-transcriptional regulators involved in development, two decades ago, miRNAs have been proven to regulate a wide range of processes in plants such as germination, morphology and responses to biotic and abiotic stress. Despite wide conservation in plants, a number of miRNAs are lineage specific. We describe the first genome wide survey of Eucalyptus miRNAs based on high throughput sequencing. RESULTS: In addition to discovering small RNA sequences, MIR loci were mapped onto the reference genome and interspecific variability investigated. Sequencing was carried out for the two most world widely planted species, E. grandis and E. globulus. To maximize discovery, E. grandis samples were from BRASUZ1, the same tree whose genome provided the reference sequence. Interspecific analysis reinforces the variability in small RNA repertoire even between closely related species. Characterization of Eucalyptus small RNA sequences showed 95 orthologous to conserved miRNAs and 193 novel miRNAs. In silico target prediction confirmed 163 novel miRNAs and degradome sequencing experimentally confirmed several hundred targets. Experimental evidence based on the exclusive expression of a set of small RNAs across 16 species within Myrtaceae further highlighted variable patterns of conservation and diversity of these regulatory elements. CONCLUSIONS: The description of miRNAs in Eucalyptus contributes to scientific knowledge of this vast genre, which is the most widely planted hardwood crop in the tropical and subtropical world, adding another important element to the annotation of Eucalyptus grandis reference genome.


Subject(s)
MicroRNAs/genetics , Myrtaceae/genetics , Genome, Plant/genetics , RNA, Plant/genetics , Sequence Analysis, RNA
13.
PLoS One ; 10(2): e0118231, 2015.
Article in English | MEDLINE | ID: mdl-25706301

ABSTRACT

Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.


Subject(s)
Digestion/genetics , Gene Expression Profiling/methods , Insect Proteins/genetics , Lepidoptera/genetics , Saccharum/parasitology , Amino Acid Sequence , Animals , CD13 Antigens/genetics , Expressed Sequence Tags/chemistry , Gene Library , Gene Ontology , Lepidoptera/growth & development , Lepidoptera/physiology , Life Cycle Stages/genetics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid
14.
BMC Genomics ; 15: 204, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24635846

ABSTRACT

BACKGROUND: The species of T. harzianum are well known for their biocontrol activity against plant pathogens. However, few studies have been conducted to further our understanding of its role as a biological control agent against S. sclerotiorum, a pathogen involved in several crop diseases around the world. In this study, we have used RNA-seq and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum gene expression during growth on cell wall of S. sclerotiorum (SSCW) or glucose. RT-qPCR was also used to examine genes potentially involved in biocontrol, during confrontation between T. harzianum and S. sclerotiorum. RESULTS: Data obtained from six RNA-seq libraries were aligned onto the T. harzianum CBS 226.95 reference genome and compared after annotation using the Blast2GO suite. A total of 297 differentially expressed genes were found in mycelia grown for 12, 24 and 36 h under the two different conditions: supplemented with glucose or SSCW. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on SSCW or glucose. We identified various genes of biotechnological value encoding proteins with functions such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. To validate the expression profile, RT-qPCR was performed using 20 randomly chosen genes. RT-qPCR expression profiles were in complete agreement with the RNA-Seq data for 17 of the genes evaluated. The other three showed differences at one or two growth times. During the confrontation assay, some genes were up-regulated during and after contact, as shown in the presence of SSCW which is commonly used as a model to mimic this interaction. CONCLUSIONS: The present study is the first initiative to use RNA-seq for identification of differentially expressed genes in T. harzianum strain TR274, in response to the phytopathogenic fungus S. sclerotiorum. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against S.sclerotiorum. The RNA-seq data presented will facilitate improvement of the annotation of gene models in the draft T. harzianum genome and provide important information regarding the transcriptome during this interaction.


Subject(s)
Ascomycota/genetics , Genes, Fungal , Transcriptome , Trichoderma/genetics , Chromosome Mapping , Cluster Analysis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Profiling , Gene Library , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Trichoderma/growth & development
15.
PLoS One ; 8(12): e85079, 2013.
Article in English | MEDLINE | ID: mdl-24386449

ABSTRACT

Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.


Subject(s)
Insect Proteins/biosynthesis , RNA Interference/physiology , Transcriptome/physiology , Weevils/metabolism , Animals , Gossypium/parasitology , Insect Proteins/genetics , Species Specificity , Weevils/genetics
16.
PLoS One ; 7(9): e44684, 2012.
Article in English | MEDLINE | ID: mdl-22984541

ABSTRACT

Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization.


Subject(s)
Chromosome Mapping/methods , Eucalyptus/genetics , Genetic Markers , Oligonucleotide Array Sequence Analysis/methods , Chromosomes, Plant , Cost-Benefit Analysis , DNA, Plant/genetics , Genetic Linkage , Genome, Plant , Genomics , Genotype , Microsatellite Repeats/genetics , Models, Genetic , Sequence Analysis, DNA/methods
17.
J Hered ; 101(4): 512-20, 2010.
Article in English | MEDLINE | ID: mdl-20231265

ABSTRACT

Species of Eucalyptus are keystone species for ecological studies in their natural ranges and are extensively planted in the tropical and subtropical regions of the world to supply high-quality woody biomass for various applications. We report the development of a selected set of 20 dinucleotide and trinucleotide repeat microsatellites derived from Eucalyptus expressed sequence tags (ESTs). These microsatellites were selected for full transferability and homogeneous rate of polymorphism across species. They were evaluated for individual fingerprinting, parentage testing, and intraspecific population structure analyses in 6 of the most extensively studied and planted species worldwide, representing key phylogenetic sections of the largest subgenus Symphyomyrtus. This set of markers provides exceptional resolution for population genetics and molecular breeding applications in the genus Eucalyptus. As they were developed from conserved transcribed regions, the transferability and polymorphism of these microsatellites will most likely extend to the other 300 or more species within the same subgenus.


Subject(s)
Eucalyptus/genetics , Expressed Sequence Tags , Microsatellite Repeats/genetics , Polymorphism, Genetic , DNA, Plant/metabolism , Genetics, Population , Genome, Plant , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...