Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(6): e0233800, 2020.
Article in English | MEDLINE | ID: mdl-32497070

ABSTRACT

Several studies suggest the relation of DNA methylation to diseases in humans and important phenotypes in plants drawing attention to this epigenetic mark as an important source of variability. In the last decades, several methodologies were developed to assess the methylation state of a genome. However, there is still a lack of affordable and precise methods for genome wide analysis in large sample size studies. Methyl sensitive double digestion MS-DArT sequencing method emerges as a promising alternative for methylation profiling. We developed a computational pipeline for the identification of DNA methylation using MS-DArT-seq data and carried out a pilot study using the Eucalyptus grandis tree sequenced for the species reference genome. Using a statistic framework as in differential expression analysis, 72,515 genomic sites were investigated and 5,846 methylated sites identified, several tissue specific, distributed along the species 11 chromosomes. We highlight a bias towards identification of DNA methylation in genic regions and the identification of 2,783 genes and 842 transposons containing methylated sites. Comparison with WGBS, DNA sequencing after treatment with bisulfite, data demonstrated a precision rate higher than 95% for our approach. The availability of a reference genome is useful for determining the genomic context of methylated sites but not imperative, making this approach suitable for any species. Our approach provides a cost effective, broad and reliable examination of DNA methylation profile on MspI/HpaII restriction sites, is fully reproducible and the source code is available on GitHub (https://github.com/wendelljpereira/ms-dart-seq).


Subject(s)
Cost-Benefit Analysis , DNA Methylation/genetics , Eucalyptus/genetics , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Plant Leaves/genetics , Sequence Analysis, DNA/methods , Trees/genetics , Chromosomes, Plant/genetics , DNA Restriction Enzymes/genetics , DNA Transposable Elements/genetics , Genes, Plant/genetics , Genotyping Techniques/economics , High-Throughput Nucleotide Sequencing/economics , Pilot Projects , Reproducibility of Results , Restriction Mapping , Sequence Analysis, DNA/economics , Sulfites/pharmacology
2.
BMC Genomics ; 16: 1113, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26714854

ABSTRACT

BACKGROUND: Micro RNAs are a class of small non coding RNAs of 20-24 nucleotides transcribed as single stranded precursors from MIR gene loci. Initially described as post-transcriptional regulators involved in development, two decades ago, miRNAs have been proven to regulate a wide range of processes in plants such as germination, morphology and responses to biotic and abiotic stress. Despite wide conservation in plants, a number of miRNAs are lineage specific. We describe the first genome wide survey of Eucalyptus miRNAs based on high throughput sequencing. RESULTS: In addition to discovering small RNA sequences, MIR loci were mapped onto the reference genome and interspecific variability investigated. Sequencing was carried out for the two most world widely planted species, E. grandis and E. globulus. To maximize discovery, E. grandis samples were from BRASUZ1, the same tree whose genome provided the reference sequence. Interspecific analysis reinforces the variability in small RNA repertoire even between closely related species. Characterization of Eucalyptus small RNA sequences showed 95 orthologous to conserved miRNAs and 193 novel miRNAs. In silico target prediction confirmed 163 novel miRNAs and degradome sequencing experimentally confirmed several hundred targets. Experimental evidence based on the exclusive expression of a set of small RNAs across 16 species within Myrtaceae further highlighted variable patterns of conservation and diversity of these regulatory elements. CONCLUSIONS: The description of miRNAs in Eucalyptus contributes to scientific knowledge of this vast genre, which is the most widely planted hardwood crop in the tropical and subtropical world, adding another important element to the annotation of Eucalyptus grandis reference genome.


Subject(s)
MicroRNAs/genetics , Myrtaceae/genetics , Genome, Plant/genetics , RNA, Plant/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...