Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromolecules ; 56(24): 9969-9982, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38161324

ABSTRACT

The development of nanocomposites relies on structure-property relations, which necessitate multiscale modeling approaches. This study presents a modeling framework that exploits mesoscopic models to predict the thermal and mechanical properties of nanocomposites starting from their molecular structure. In detail, mesoscopic models of polypropylene (PP)- and graphene-based nanofillers (graphene (Gr), graphene oxide (GO), and reduced graphene oxide (rGO)) are considered. The newly developed mesoscopic model for the PP/Gr nanocomposite provides mechanistic information on the thermal and mechanical properties at the filler-matrix interface, which can then be exploited to enhance the prediction accuracy of traditional continuum simulations by calibrating the thermal and mechanical properties of the filler-matrix interface. Once validated through a dedicated experimental campaign, this multiscale model demonstrates that with the modest addition of nanofillers (up to 2 wt %), the Young's modulus and thermal conductivity show up to 35 and 25% enhancement, respectively, whereas the Poisson's ratio slightly decreases. Among the different combinations tested, the PP/Gr nanocomposite shows the best mechanical properties, whereas PP/rGO demonstrates the best thermal conductivity. This validated mesoscopic model can contribute to the development of smart materials with enhanced mechanical and thermal properties based on polypropylene, especially for mechanical, energy storage, and sensing applications.

2.
Polymers (Basel) ; 14(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160460

ABSTRACT

A polyamide (PA) 12-based thermoplastic composite was modified with carbon nanotubes (CNTs), CNTs grafted onto chopped carbon fibers (CFs), and graphene nanoplatelets (GNPs) with CNTs to improve its thermal conductivity for application as a heat sink in electronic components. The carbon-based nanofillers were examined by SEM and Raman. The laser flash method was used to measure the thermal diffusivity in order to calculate the thermal conductivity. Electrical conductivity measurements were made using a Keithley 6517B electrometer in the 2-point mode. The composite structure was examined by SEM and micro-CT. PA12 with 15 wt% of GNPs and 1 wt% CNTs demonstrated the highest thermal conductivity, and its processability was investigated, utilizing sequential interdependence tests to evaluate the composite material behavior during fused filament fabrication (FFF) 3D printing processing. Through this assessment, selected printing parameters were investigated to determine the optimum parametric combination and processability window for the composite material, revealing that the selected composition meets the necessary criteria to be processable with FFF.

3.
ACS Appl Mater Interfaces ; 10(49): 43192-43202, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30406999

ABSTRACT

Chemical vapor deposition (CVD) is regarded as a promising fabrication method for the automated, large-scale, production of graphene and other two-dimensional materials. However, its full commercial exploitation is limited by the presence of structural imperfections such as folds, wrinkles, and even cracks that downgrade its physical and mechanical properties. For example, as shown here by means of Raman spectroscopy, the stress transfer from an epoxy matrix to CVD graphene is on average 30% of that of exfoliated monolayer graphene of over 10 µm in dimensions. However, in terms of electrical response, the situation is reversed; the resistance has been found here to decrease by the imposition of mechanical deformation possibly due to the opening up of the structure and the associated increase of electron mobility. This finding paves the way for employing CVD graphene/epoxy composites or coatings as conductive "networks" or bridges in cases for which the conductivity needs to be increased or at least retained when the system is under deformation. The tuning/control of such systems and their operative limitations are discussed here.

4.
ACS Appl Mater Interfaces ; 8(34): 22605-14, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27494211

ABSTRACT

The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the "island-like" microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene "islands" but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of "finger" contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...