Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics ; 13(10-11): 1013-1026, 2018.
Article in English | MEDLINE | ID: mdl-30240284

ABSTRACT

Stem cell-based cardiogenesis has become a powerful tool to enhance our understanding of cardiac development and test novel therapeutics for cardiovascular diseases. However, transcriptional and epigenetic regulation of multiple transitional stages from pluripotent cells to committed cardiomyocytes has not yet been fully characterized. To characterize how transcription factors, lincRNAs and DNA methylation change at temporal developmental stages, and identify potential novel regulators during cardiogenesis. We utilized a previously reported protocol that yields human cardiomyocytes (hCM) with more than 90% purity from human Embryonic Stem Cells (hESC). Leveraging the purity of cells resulting from this protocol, we systematically examined how gene expression and DNA methylation programs change at temporal developmental stages during cardiogenesis. Our results provide a comprehensive view of expression changes during cardiogenesis that extend previous studies, allowing us to identify key transcription factors as well as lincRNAs that are strongly associated with cardiac differentiation. Moreover, we incorporated a simple but powerful method to screen for novel regulators of cardiogenesis solely based on expression changes and found four novel cardiac-related transcription factors, i.e., SORBS2, MITF, DPF3, and ZNF436, which have no or few prior literature reports and we were able to validate using siRNA. Our strategy of identifying novel regulators of cardiogenesis can also be easily implemented in other stem cell-based systems. Our results provide a valuable resource for understanding cardiogenesis that extends previous findings by leveraging the purity of our cell lines, which allowed us to identify four novel cardiac-related regulators.


Subject(s)
DNA Methylation , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Transcriptome , Adaptor Proteins, Signal Transducing , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Human Embryonic Stem Cells/cytology , Humans , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Myocytes, Cardiac/cytology , RNA-Binding Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Elife ; 62017 12 12.
Article in English | MEDLINE | ID: mdl-29231167

ABSTRACT

The heart switches its energy substrate from glucose to fatty acids at birth, and maternal hyperglycemia is associated with congenital heart disease. However, little is known about how blood glucose impacts heart formation. Using a chemically defined human pluripotent stem-cell-derived cardiomyocyte differentiation system, we found that high glucose inhibits the maturation of cardiomyocytes at genetic, structural, metabolic, electrophysiological, and biomechanical levels by promoting nucleotide biosynthesis through the pentose phosphate pathway. Blood glucose level in embryos is stable in utero during normal pregnancy, but glucose uptake by fetal cardiac tissue is drastically reduced in late gestational stages. In a murine model of diabetic pregnancy, fetal hearts showed cardiomyopathy with increased mitotic activity and decreased maturity. These data suggest that high glucose suppresses cardiac maturation, providing a possible mechanistic basis for congenital heart disease in diabetic pregnancy.


Subject(s)
Embryonic Stem Cells/cytology , Glucose/pharmacology , Muscle Development/drug effects , Myocardium/cytology , Myocytes, Cardiac/cytology , Nucleotides/biosynthesis , Animals , Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pentose Phosphate Pathway , Pregnancy , Sweetening Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...