Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids Health Dis ; 11: 63, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22668674

ABSTRACT

BACKGROUND: Conjugated linoleic acids (CLA) are in focus of dairy cattle research because of its milk fat reducing effects. Little is known about the impact of CLA on immune function in dairy cows. Therefore, in the present study we investigated the effects of a long term supplementation of dairy cows with CLA on the fatty acid profile of peripheral blood mononuclear cells (PBMC) and their proliferation ex vivo. RESULTS: The supplementation of dairy cows with either 100 g/d of a control fat preparation (CON, n = 15), 50 g/d of the control fat preparation and 50 g/d CLA supplement - containing 12.0% cis-9, trans-11 and 11.9% trans-10, cis-12 CLA of total fatty acid methyl esters - (CLA-50, n = 15) or 100 g/d of the CLA supplement (CLA-100, n = 16) did not influence the major fatty acids (C18:0, C16:0, cis-9 C18:1, cis-9, cis-12 C18:2, cis-5, cis-8, cis-11, cis-14 C20:4) in the lipid fraction of PBMC. The proportion of trans-10, cis-12 CLA of total fatty acids was increased in both CLA supplemented groups, but there was no effect on the cis-9, trans-11 isomer. Furthermore, the proportion of trans-9 C18:1 and cis-12 C24:1 was reduced in the CLA-100 group. The mitogen stimulated cell proliferation was not influenced by CLA feeding. CONCLUSION: CLA supplementation influenced the FA profile of some minor FA in PBMC, but these changes did not lead to differences in the mitogen induced activation of the cells.


Subject(s)
Cattle/blood , Fatty Acids/blood , Leukocytes, Mononuclear/metabolism , Linoleic Acids, Conjugated/administration & dosage , Animals , Cattle/immunology , Cattle/metabolism , Cell Proliferation/drug effects , Dietary Supplements , Female , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipid Metabolism/drug effects , Metabolome , Milk/drug effects , Milk/metabolism
2.
Arch Anim Nutr ; 65(2): 89-107, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21545076

ABSTRACT

The supplementation of conjugated linoleic acids (CLA) to the rations of dairy cows represents an opportunity to reduce the content of milk fat. Therefore, CLA have the potential beneficial effect of reducing energy requirements of the early lactating cow. The present study aimed at the examination of long-term and posttreatment effects of dietary CLA intake on performance, variables of energy metabolism-like plasma levels of non esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB), and fatty acid profile in milk fat. Forty-six pregnant German Holstein cows were assigned to one of three dietary treatments: (1) 100 g/ d of control fat supplement (CON), (2) 50 g/d of control fat supplement and 50 g/ d of CLA supplement (CLA-1) and (3) 100 g/d of CLA supplement (CLA-2). The lipid-encapsulated CLA supplement consisted of approximately 10% of trans-10, cis-12 CLA and cis-9, trans-11 CLA each. The experiment started 1 d after calving and continued for about 38 weeks, divided into a supplementation (26 weeks) and a depletion period (12 weeks). Over the first 7 weeks of treatment, 11 and 16% reductions in dry matter intake compared to control were observed for the cows fed CLA-1 and CLA-2 supplements respectively. Consequently, the calculated energy balance for these two CLA groups was lower compared to the control. Plasma levels of NEFA and BHB remained unaffected. Later in lactation the highest CLA supplementation resulted in a reduction of milk fat content of 0.7%. However, no reduction in milk fat yield, and accordingly no milk fat depression (MFD), could be shown. The trans-10, cis-12 CLA in milk fat increased with increasing dietary CLA supplementation in a dose-dependent manner. The proportion of C16 in milk fat was decreased by the highest CLA supplementation. With the exception of an increase in plasma glucose level in the CLA-2 group, no post-treatment effects were observed. Overall, under the conditions of the present study no improvement in the calculated energy balance by CLA supplementation could be shown for the entire evaluation period.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Diet/veterinary , Fatty Acids, Nonesterified/blood , Linoleic Acids, Conjugated/pharmacology , Milk/chemistry , Animals , Dietary Supplements , Drug Administration Schedule , Energy Metabolism/drug effects , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Female , Lactation , Linoleic Acids, Conjugated/administration & dosage , Linoleic Acids, Conjugated/chemistry , Rumen/physiology , Time Factors
3.
Arch Anim Nutr ; 65(1): 1-20, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21452610

ABSTRACT

Two experiments were carried out to examine the effects of feeding an uncontaminated control diet (CON) or a Fusarium toxin-contaminated diet (FUS; 10.7 mg deoxynivalenol [DON]/kg diet) to growing broilers, which were either uninfected or infected with infectious bursal disease virus (IBDV) beginning at 1 day post hatch. Broilers had been infected at three weeks post hatch with either a classical virulent infectious bursal disease virus (IBDV-IM, Exp. 1) or a very virulent IBDV (vvIBDV, Exp. 2) strain. The effects of the DON-contaminated diet in combination with the virus-infection on the bursa of Fabricius and spleen were determined at 3 and 6-7 days post infection. The transient development of the bursa oedema and the bursa atrophy was not significantly affected by the diet after infection with the different IBDV-strains. The histopathological lesions were more severe in IBDV-IM-infected birds at 6 days post infection when additionally exposed to the FUS diet as compared to the FUS-free feed. Most parameters of the bursa of Fabricius and spleen protein turnover (e.g. fractional protein synthesis rate, protein, DNA and RNA content and derived indices) were significantly and interactively influenced by infection and stage of infection. The vvIBDV-infected birds responded with a more pronounced depressing effect on the fractional protein synthesis rate after feeding the DON-containing FUS diet when compared to their IBDV-IM-infected counterparts, where the opposite effect was observed. It can be concluded that feeding a FUS diet to IBDV-infected broilers might modulate the virulence-dependent pathogenesis of an IBDV infection.


Subject(s)
Birnaviridae Infections/veterinary , Bursa of Fabricius/metabolism , Chickens/metabolism , Fusarium , Mycotoxins/toxicity , Spleen/metabolism , Animal Feed/analysis , Animals , Birnaviridae Infections/metabolism , DNA/metabolism , Diet/veterinary , Food Contamination , Gene Expression Regulation/drug effects , Infectious bursal disease virus , Male , Poultry Diseases/chemically induced , Poultry Diseases/metabolism , Poultry Diseases/virology , Proteins/metabolism , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...