Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877170

ABSTRACT

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.

2.
Curr Opin Immunol ; 82: 102299, 2023 06.
Article in English | MEDLINE | ID: mdl-36913776

ABSTRACT

Antigen-induced memory T cells undergo counterintuitive activation in an antigen-independent manner, which is called bystander response. Although it is well documented that memory CD8+ T cells produce IFNγ and upregulate the cytotoxic program upon the stimulation with inflammatory cytokines, there is only rare evidence that this provides an actual protection against pathogens in immunocompetent individuals. One of the reasons might be numerous antigen-inexperienced memory-like T cells that are also capable of the bystander response. Little is known about the bystander protection of memory and memory-like T cells and their redundancies with innate-like lymphocytes in humans because of the interspecies differences and the lack of controlled experiments. However, it has been proposed that IL-15/NKG2D-driven bystander activation of memory T cells drives protection or immunopathology in particular human diseases.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocyte Activation , Humans , Antigens , Cytokines , Immunologic Memory
3.
Nat Immunol ; 24(1): 174-185, 2023 01.
Article in English | MEDLINE | ID: mdl-36564464

ABSTRACT

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , T-Lymphocytes, Cytotoxic , Mice , Animals , T-Lymphocytes, Cytotoxic/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , CD4 Antigens , Signal Transduction , Receptors, Antigen, T-Cell/metabolism , CD8 Antigens/metabolism
4.
Front Immunol ; 13: 1009198, 2022.
Article in English | MEDLINE | ID: mdl-36275704

ABSTRACT

Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon Type I , Mice , Animals , Thymus Gland , Clone Cells , Autoantigens
5.
FEBS J ; 288(6): 1778-1788, 2021 03.
Article in English | MEDLINE | ID: mdl-32738029

ABSTRACT

It has been appreciated for more than three decades that the interactions between the T-cell antigen receptor and self-antigens are the major determinants of the cell fates of developing thymocytes and the establishment of central tolerance. However, recent evidence shows that the level of self-reactivity substantially contributes to fate choices of positively selected mature T cells in homeostasis, as well as during immune responses. This implies that individual clones of peripheral T cells are predisposed to specific functional properties based on the self-reactivity of their antigen receptors. Overall, the relative difference in the self-reactivity among peripheral T cells is an important factor contributing to the diversity of T-cell responses to foreign antigens.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Humans , Lymphocyte Activation/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Antigen, T-Cell/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymus Gland/cytology
6.
Cells ; 8(7)2019 06 28.
Article in English | MEDLINE | ID: mdl-31261688

ABSTRACT

The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2's role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets-recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide-protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.


Subject(s)
Cell Nucleus/metabolism , Eukaryota/genetics , Genome , Phosphatidylinositol 4,5-Diphosphate/metabolism , RNA Polymerase II/metabolism , RNA Polymerase I/metabolism , Cell Nucleus/genetics , Chromatin Assembly and Disassembly , Eukaryota/metabolism , Protein Binding/physiology , RNA Processing, Post-Transcriptional , Transcription, Genetic
7.
Histochem Cell Biol ; 150(3): 245-253, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29982846

ABSTRACT

Even though the majority of knowledge about phospholipids comes from their cytoplasmic functions, in the last decade, it has been shown that nuclear phospholipids and their building blocks, inositol phosphates, have many important roles in the cell nucleus. There are clear connections of phospholipids with the regulation of gene expression and chromatin biology, however, this review focuses on less known functions of nuclear phospholipids in connection with the epigenome regulation. In particular, we highlight the roles of nuclear phospholipids and inositol phosphates that involve histone modifications, such as acetylation or methylation, tightly connected with the cell physiology. This demonstrates the importance of nuclear phospholipids in the regulation of cellular processes, and should encourage further research of nuclear phospholipids and inositol phosphates.


Subject(s)
Epigenesis, Genetic , Inositol Phosphates/metabolism , Phospholipids/metabolism , Animals , Chromatin/chemistry , Chromatin/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation , Humans , Inositol Phosphates/chemistry , Molecular Structure , Phospholipids/chemistry
8.
Electrochim Acta ; 235: 471-479, 2017 05 01.
Article in English | MEDLINE | ID: mdl-29109588

ABSTRACT

An extensive characterization of pristine and oxidized Ti3C2Tx (T: =O, -OH, -F) MXene showed that exposure of MXene to an anodic potential in the aqueous solution oxidizes the nanomaterial forming TiO2 layer or TiO2 domains with subsequent TiO2 dissolution by F- ions, making the resulting nanomaterial less electrochemically active compared to the pristine Ti3C2Tx. The Ti3C2Tx could be thus applied for electrochemical reactions in a cathodic potential window i.e. for ultrasensitive detection of H2O2 down to nM level with a response time of approx. 10 s. The manuscript also shows electrochemical behavior of Ti3C2Tx modified electrode towards oxidation of NADH and towards oxygen reduction reactions.

9.
Langmuir ; 32(28): 7070-8, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27311591

ABSTRACT

An impedimetric lectin biosensor for the detection of changes in the glycan structure of antibodies isolated from human serum is here correlated with the progression of rheumatoid arthritis (RA). The biosensor was built up from a mixed self-assembled monolayer (SAM) on gold consisting of two different thiolated zwitterionic derivatives, carboxybetaine and sulfobetaine, to resist nonspecific interactions. The carboxyl-terminated one was applied also for the covalent immobilization of lectin Ricinus communis agglutinin I (RCA-I). The process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques. Impedimetric assays were integrated on a chip consisting of eight gold working electrodes, which is an important step toward the achievement of a moderate level of multiplexing for the analysis of human serum samples. At the end, the results obtained by the impedimetric analysis of immunoglobulins G (IgGs) isolated from serum samples were compared with those of two other standard bioanalytical methods employing lectins, that is, lectin microarrays (MAs) and enzyme-linked lectin binding assays (ELLBAs). The impedimetric results agreed very well with the DAS28 index (RA disease activity score 28), suggesting that impedimetric assays could be used for the development of a new diagnostic procedure sensitive to glycosylation changes in human IgGs and thus RA progression.


Subject(s)
Arthritis, Rheumatoid/blood , Biosensing Techniques , Immunoglobulin G/analysis , Plant Lectins/chemistry , Polysaccharides/analysis , Protein Array Analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Electrodes , Glycosylation , Humans , Immunoassay/instrumentation , Immunoassay/methods , Immunoglobulin G/blood , Polysaccharides/blood , Protein Array Analysis/instrumentation , Protein Array Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...