Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 40(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37399035

ABSTRACT

Phage therapy is a promising method for the treatment of multidrug-resistant bacterial infections. However, its long-term efficacy depends on understanding the evolutionary effects of the treatment. Current knowledge of such evolutionary effects is lacking, even in well-studied systems. We used the bacterium Escherichia coli C and its bacteriophage ΦX174, which infects cells using host lipopolysaccharide (LPS) molecules. We first generated 31 bacterial mutants resistant to ΦX174 infection. Based on the genes disrupted by these mutations, we predicted that these E. coli C mutants collectively produce eight unique LPS structures. We then developed a series of evolution experiments to select for ΦX174 mutants capable of infecting the resistant strains. During phage adaptation, we distinguished two types of phage resistance: one that was easily overcome by ΦX174 with few mutational steps ("easy" resistance) and one that was more difficult to overcome ("hard" resistance). We found that increasing the diversity of the host and phage populations could accelerate the adaptation of phage ΦX174 to overcome the hard resistance phenotype. From these experiments, we isolated 16 ΦX174 mutants that, together, can infect all 31 initially resistant E. coli C mutants. Upon determining the infectivity profiles of these 16 evolved phages, we uncovered 14 distinct profiles. Given that only eight profiles are anticipated if the LPS predictions are correct, our findings highlight that the current understanding of LPS biology is insufficient to accurately forecast the evolutionary outcomes of bacterial populations infected by phage.


Subject(s)
Bacteriophages , Escherichia coli , Escherichia coli/genetics , Lipopolysaccharides/pharmacology , Bacteriophages/genetics , Mutation , Phenotype
2.
PLoS Genet ; 18(12): e1010535, 2022 12.
Article in English | MEDLINE | ID: mdl-36508455

ABSTRACT

Noise in expression of individual genes gives rise to variations in activity of cellular pathways and generates heterogeneity in cellular phenotypes. Phenotypic heterogeneity has important implications for antibiotic persistence, mutation penetrance, cancer growth and therapy resistance. Specific molecular features such as the presence of the TATA box sequence and the promoter nucleosome occupancy have been associated with noise. However, the relative importance of these features in noise regulation is unclear and how well these features can predict noise has not yet been assessed. Here through an integrated statistical model of gene expression noise in yeast we found that the number of regulating transcription factors (TFs) of a gene was a key predictor of noise, whereas presence of the TATA box and the promoter nucleosome occupancy had poor predictive power. With an increase in the number of regulatory TFs, there was a rise in the number of cooperatively binding TFs. In addition, an increased number of regulatory TFs meant more overlaps in TF binding sites, resulting in competition between TFs for binding to the same region of the promoter. Through modeling of TF binding to promoter and application of stochastic simulations, we demonstrated that competition and cooperation among TFs could increase noise. Thus, our work uncovers a process of noise regulation that arises out of the dynamics of gene regulation and is not dependent on any specific transcription factor or specific promoter sequence.


Subject(s)
Gene Expression , Transcription Factors , Binding Sites/genetics , Gene Expression/genetics , Gene Expression/physiology , Nucleosomes/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...