Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 9(2): 620-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24282075

ABSTRACT

The chemical behavior of S-glycopyranosyl-N-monoalkyl dithiocarbamates (DTCs) as masked 1-glycosyl thiols, easily prepared by the nucleophilic displacement of 1-halo sugars with dithiocarbamate salts of primary amines, has been studied and synthetically exploited. This behavior relies on the abstraction of the proton of the carbamate functionality that allows controlled access to thiolate sugar intermediates. The basic character of the DTC salts used as reagents leads to thiolates that evolve in situ to symmetrical diglycosyldisulfides (DGDSs) when long reaction times are allowed. Alternatively, controlled unmasking of the thiolate function can be efficiently attained by treatment with an external base of isolated anomeric glycosyl DTCs, the formation of which is prevalent when using short reaction times. In this manner, a second methodology for the preparation of symmetrical DGDSs and a chemical protocol for the S-glycosylation of any electrophilic substrate are established. The applications of this last strategy for the preparation of thioglycosyl vinyl sulfones, thiodisaccharides, and S-linked homo- and heterodivalent neoglycoconjugates are described as a proof-of-concept of the great potential of the sugar DTCs in any chemical scenario in which the covalent attachment of a thiol sugar is required. The evaluation of the biological functionality of some divalent sulfurated sugar systems is also described.


Subject(s)
Carbamates/chemistry , Carbohydrates/chemistry , Glycopeptides/chemistry , Sulfhydryl Compounds/chemistry , Binding Sites , Carbamates/chemical synthesis , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Lectins/chemistry , Lectins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...