Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Biomech ; : 1-15, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33655809

ABSTRACT

The present study focused on propulsive forces applied during tethered swimming. The main aims were to identify asymmetries between dominant and non-dominant arms, quantify the effect of breathing on force application and, explore any association between each variable and swimming performance. Fifteen regional level swimmers completed a maximal front crawl tethered swimming test, with maximal kicking, under four conditions: 1) Dominant arm strokes only, no breathing; 2) non-dominant arm strokes only, no breathing; 3) full stroke, no breathing; 4) full stroke, breathing on the preferred side. The outcome variables were: absolute and normalised (force divided by body mass) minimum, mean and maximum force; stroke cycle time and; impulse. The symmetry index was also calculated, and all variables were correlated with the swimmers' season best times in 50 m front crawl. Some bilateral force asymmetries were found, but they did not always favour the dominant side and were not directly linked with swimming performance. There was no strong evidence that force production is higher on the dominant side or that symmetry in force production affects performance. Despite the longer stroke cycle times when breathing, the breathing actions did not affect force production. Faster swimmers often produced higher maximum force values and, sometimes, higher mean force values.

2.
J Sports Sci ; 37(17): 2026-2036, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31084299

ABSTRACT

As the effect of performance level on sprinting mechanics has not been fully studied, we examined mechanical differences at maximal running speed (MRS) over a straight-line 35 m sprint amongst sprinters of different performance levels. Fifty male track and field sprinters, divided in Slow, Medium and Fast groups (MRS: 7.67 ± 0.27 m∙s-1, 8.44 ± 0.22 m∙s-1, and 9.37 ± 0.41 m∙s-1, respectively) were tested. A high-speed camera (250 Hz) recorded a full stride in the sagittal plane at 30-35 m. MRS was higher (p < 0.05) in Fast vs. Medium (+11.0%) and Slow (+22.1%) as well as in Medium vs. Slow (+10.0%). Twelve, eight and seven out of 21 variables significantly distinguished Fast from Slow, Fast from Medium and Medium from Slow sprinters, respectively. Propulsive phase was significantly shorter in Fast vs. Medium (-17.5%) and Slow (-29.4%) as well as in Medium vs. Slow (-14.4%). Fast sprinters had significantly higher vertical and leg stiffness values than Medium (+44.1% and +18.1%, respectively) and Slow (+25.4% and +22.0%, respectively). MRS at 30-35 m increased with performance level during a 35-m sprint and was achieved through shorter contact time, longer step length, faster step rate, and higher vertical and leg stiffness.


Subject(s)
Athletic Performance/physiology , Gait , Running/physiology , Adult , Biomechanical Phenomena , Humans , Male , Posture , Spatio-Temporal Analysis , Video Recording , Young Adult
3.
Article in English | MEDLINE | ID: mdl-33344947

ABSTRACT

The effect of the inclusion of a high hurdle 13.72 m after the start line on elite sprint start and initial acceleration technique has yet to be investigated or understood. This highly novel study addresses that lack of information in an exceptional manner, through detailed biomechanical analysis of the world's best sprint and hurdle athletes, with data collected in situ at the 2018 IAAF World Indoor Championships, held in Birmingham, UK. High speed videos (150 Hz) were compared for eight sprinters and seven hurdlers for the start and initial acceleration phase of the finals of the men's 60 m and 60 m hurdles. Temporal and kinematic data were supplemented by vector coding analysis to investigate mechanisms by which these world-class athletes translate their centres of mass (CM) up to the fourth touchdown post-block exit. The sprinters and hurdlers coordinated their lower limb and trunk movement in a similar manner throughout the start and initial acceleration phases, which contributes new conceptual understanding of the mechanisms that underpin start and initial acceleration performance. Differences between groups were initiated from block set-up, with the hurdlers utilising a larger block spacing, but with the front block nearer to the start line than sprinters. Even after accounting for stature, the biggest differences in the raising of the CM occurred during the block phase, with hurdlers greater than sprinters (difference in vertical CM displacement scaled to stature = -0.037, very large effect size). Subsequent flight phases showed the biggest differences in the translation of the CM, in part due to longer flight times in the hurdlers, whilst the techniques of the two groups generally converged during the ground contact phases of initial acceleration. In highlighting that similar techniques are used by world-class sprinters and hurdlers, despite differing task constraints, this study has provided invaluable insights for scientists, coaches, and athletes, that will inform further developments in understanding and practice across both sprints and hurdles.

SELECTION OF CITATIONS
SEARCH DETAIL
...