Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1400375, 2024.
Article in English | MEDLINE | ID: mdl-38863676

ABSTRACT

The article discusses the promising synergy between MXenes and polymers in developing advanced nanocomposites with diverse applications in biomedicine domains. MXenes, possessing exceptional properties, are integrated into polymer matrices through various synthesis and fabrication methods. These nanocomposites find applications in drug delivery, imaging, diagnostics, and environmental remediation. They offer improved therapeutic efficacy and reduced side effects in drug delivery, enhanced sensitivity and specificity in imaging and diagnostics, and effectiveness in water purification and pollutant removal. The perspective also addresses challenges like biocompatibility and toxicity, while suggesting future research directions. In totality, it highlights the transformative potential of MXenes-polymer nanocomposites in addressing critical issues across various fields.

2.
Sci Rep ; 13(1): 12193, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500703

ABSTRACT

In this work, a numerical assessment of the optoelectrical properties of the ZnO-ZnSe-CdSe heterojunction for a thin and cost-effective solar cell was made by using the PC1D simulation software. The photovoltaic (PV) properties have been optimized by varying thicknesses of the absorber layer of the p-CdSe layer, the window layer of n-ZnSe, and the antireflection coating (ARC) layer of ZnO, a transparent conductive oxide with enhanced light trapping, and wide bandgap engineering. There is a positive conduction band offset (CBO) of ΔEc = 0.25 eV and a negative valence band offset (VBO) of ΔEv = 1.2 - 2.16 = - 0.96 eV. The positive CBO prevents the flow of electrons from the CdSe to the ZnSe layer. Further, the impact of doping concentration on the performance of solar cells has been analyzed. The simulation results reveal the increase in the efficiency of solar cells by adding an ARC. The rapid and sharp increase in the efficiency with the thickness of the window layer beyond 80 nm is interesting, unusual, and unconventional due to the combined effect of morphology and electronics on a macro-to-micro scale. The thin-film solar cell with the structure of ZnO/ZnSe/CdSe exhibited a high efficiency of 11.98% with short-circuit current (Isc) = 1.72 A, open-circuit voltage (Voc) = 0.81 V and fill factor (FF) = 90.8% at an optimized thickness of 2 µm absorber layer, 50 nm window layer, and 78 nm ARC layer. The EQE of solar cells has been observed at about 90% at a particular wavelength at 470 nm (visible light range). Around 12% of efficiency from such a thin-layered solar cell is highly applicable.

3.
Polymers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015690

ABSTRACT

MXenes are 2D ceramic materials, especially carbides, nitrides, and carbonitrides derived from their parent 'MAX' phases by the etching out of 'A' and are famous due to their conducting, hydrophilic, biocompatible, and tunable properties. However, they are hardly stable in the outer environment, have low biodegradability, and have difficulty in drug release, etc., which are overcome by MXene/Polymer nanocomposites. The MXenes terminations on MXene transferred to the polymer after composite formation makes it more functional. With this, there is an increment in photothermal conversion efficiency for cancer therapy, higher antibacterial activity, biosensors, selectivity, bone regeneration, etc. The hydrophilic surfaces become conducting in the metallic range after the composite formation. MXenes can effectively be mixed with other materials like ceramics, metals, and polymers in the form of nanocomposites to get improved properties suitable for advanced applications. In this paper, we review different properties like electrical and mechanical, including capacitances, dielectric losses, etc., of nanocomposites more than those like Ti3C2Tx/polymer, Ti3C2/UHMWPE, MXene/PVA-KOH, Ti3C2Tx/PVA, etc. along with their applications mainly in energy storing and biomedical fields. Further, we have tried to enlist the MXene-based nanocomposites and compare them with conducting polymers and other nanocomposites. The performance under the NIR absorption seems more effective. The MXene-based nanocomposites are more significant in most cases than other nanocomposites for the antimicrobial agent, anticancer activity, drug delivery, bio-imaging, biosensors, micro-supercapacitors, etc. The limitations of the nanocomposites, along with possible solutions, are mentioned.

4.
J Mech Behav Biomed Mater ; 17: 34-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23131792

ABSTRACT

The present work represents the first reported quantified anisotropic, inhomogeneous material constitutive data for the human supraspinous ligament (SSL). Multi-axial material data from 30 human cadaveric SSL samples was collected from distinct locations (dorsal, midsection, and ventral). A structurally motivated strain-energy based continuum model was employed to characterize anisotropic constitutive parameters for each sample. The anisotropic constitutive response correlated well with the reported experimental data (R2>0.97). Results show that in the lumbar spine both the material stiffness and stress at failure were significantly higher in the ventral region of the SSL as compared with the dorsal region (p<0.05). In the along fiber direction a higher stiffness and stress at failure were observed when compared to the transverse direction. These results indicate that modeling spinal ligaments using the hyperelastic line elements that have typically been used may be insufficient to capture their complex material response.


Subject(s)
Ligaments/physiology , Lumbar Vertebrae/physiology , Mechanical Phenomena , Aged , Aged, 80 and over , Anisotropy , Back Pain/physiopathology , Biomechanical Phenomena , Female , Finite Element Analysis , Humans , Ligaments/physiopathology , Lumbar Vertebrae/physiopathology , Male , Middle Aged , Thoracic Vertebrae/physiology , Thoracic Vertebrae/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...