Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100593, 2021.
Article in English | MEDLINE | ID: mdl-33775697

ABSTRACT

Dysregulation of the developmentally important Notch signaling pathway is implicated in several types of cancer, including breast cancer. However, the specific roles and regulation of the four different Notch receptors have remained elusive. We have previously reported that the oncogenic PIM kinases phosphorylate Notch1 and Notch3. Phosphorylation of Notch1 within the second nuclear localization sequence of its intracellular domain (ICD) enhances its transcriptional activity and tumorigenicity. In this study, we analyzed Notch3 phosphorylation and its functional impact. Unexpectedly, we observed that the PIM target sites are not conserved between Notch1 and Notch3. Notch3 ICD (N3ICD) is phosphorylated within a domain, which is essential for formation of a transcriptionally active complex with the DNA-binding protein CSL. Through molecular modeling, X-ray crystallography, and isothermal titration calorimetry, we demonstrate that phosphorylation of N3ICD sterically hinders its interaction with CSL and thereby inhibits its CSL-dependent transcriptional activity. Surprisingly however, phosphorylated N3ICD still maintains tumorigenic potential in breast cancer cells under estrogenic conditions, which support PIM expression. Taken together, our data indicate that PIM kinases modulate the signaling output of different Notch paralogs by targeting distinct protein domains and thereby promote breast cancer tumorigenesis via both CSL-dependent and CSL-independent mechanisms.


Subject(s)
Breast Neoplasms/pathology , Carcinogenesis , Proto-Oncogene Proteins c-pim-1/metabolism , Receptor, Notch3/metabolism , Active Transport, Cell Nucleus , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice , Models, Molecular , Muscle Proteins/metabolism , Phosphorylation , Protein Domains , Receptor, Notch3/chemistry
2.
Front Chem ; 8: 603616, 2020.
Article in English | MEDLINE | ID: mdl-33282845

ABSTRACT

Demonstration of receptor-mediated targeting of nanoparticles to specific organs and/or cell types is an integral aim in many bionanomedicine development projects. However, engagement of targeted receptors with ligands on nanocarriers, which is the cornerstone of the active targeting concept, is challenging to study under biologically relevant conditions and thus often stays overlooked. In this work, we utilize an in-house established bioassay for in vitro targetability validation of mesoporous silica nanoparticles (MSNs), functionalized with high-affinity peptide ligands to somatostatin receptors via protective group chemistry, ensuring the correct orientation of the peptide's pharmacophore. We demonstrate that targeted nanoparticles, but not scrambled peptide-decorated counterparts, specifically engage the targeted receptors in living cells in culture media containing serum protein. The importance of being able to exclude false positives originating from the premature detachment of targeting peptides from the MSNs is highlighted.

3.
ACS Sens ; 5(11): 3438-3448, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33147407

ABSTRACT

Detection of pertussis toxin (PTX) activity is instrumental for the development and manufacturing of pertussis vaccines. These quality and safety measures require thousands of mice annually. Here, we describe Interference in Gαi-mediated Signal Transduction (iGIST), an animal-free kinetic bioassay for detection of PTX, by measuring its effect on inhibitory G protein-coupled receptor (GPCR) signaling. PTX ADP-ribosylates inhibitory α-subunits of the heterotrimeric G proteins, thereby perturbing the inhibitory GPCR signaling. iGIST is based on HEK293 cells coexpressing a somatostatin receptor 2 (SSTR2), which is an inhibitory GPCR controllable by a high-affinity agonist octreotide; and a luminescent 3'5'-cyclic adenosine monophosphate (cAMP) probe. iGIST has a low sensitivity threshold in the pg/mL range of PTX, surpassing by 100-fold in a parallel analysis the currently used in vitro end-point technique to detect PTX, the cluster formation assay (CFA) in Chinese hamster ovary cells. iGIST also detects PTX in complex samples, i.e., a commercial PTX-toxoid-containing pertussis vaccine that was spiked with an active PTX. iGIST has an objective digital readout and is observer independent, offering prospects for automation. iGIST emerges as a promising animal-free alternative to detect PTX activity in the development and manufacturing of pertussis vaccines. iGIST is also expected to facilitate basic PTX research, including identification and characterization of novel compounds interfering with PTX.


Subject(s)
Biological Assay , Pertussis Toxin , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Mice
4.
Nanotheranostics ; 2(4): 320-346, 2018.
Article in English | MEDLINE | ID: mdl-30148051

ABSTRACT

The concept of delivering nanoformulations to desired tissues by means of targeting membrane receptors of high local abundance by ligands anchored to the nanocarrier has gained a lot of attention over the last decade. Currently, there is no unanimous opinion on whether surface functionalization of nanocarriers by targeting ligands translates into any real benefit in terms of pharmacokinetics or treatment outcomes. Having examined the published nanocarriers designed to engage with somatostatin receptors, we realized that in the majority of cases targetability claims were not supported by solid evidence of targeting ligand-targeted receptor coupling, which is the very crux of a targetability concept. Here, we present an approach to characterize targetability of mesoporous silica-based nanocarriers functionalized with ligands of somatostatin receptors. The targetability proof in our case comes from a functional assay based on a genetically-encoded cAMP probe, which allows for real-time capture of receptor activation in living cells, triggered by targeting ligands on nanoparticles. We elaborate on the development and validation of the assay, highlighting the power of proper functional tests in the characterization pipeline of targeted nanoformulations.

5.
Carcinogenesis ; 37(8): 777-786, 2016 08.
Article in English | MEDLINE | ID: mdl-27234655

ABSTRACT

Keratins (K) are intermediate filament proteins important in protection from cellular stress. K8, K18 and K19 are the main components of keratin filaments in colonic epithelia but their role in intestinal diseases remains ambiguous. A function for keratins in intestinal health is supported by the K8-knock-out (K8(-/-)) mouse which manifests an early chronic ulcerative colitis-like inflammatory bowel disease and epithelial hyperproliferation. We tested whether K8(-/-) mice are more susceptible to colorectal cancer (CRC) compared to K8 wild type (K8(+/+)), and K8 heterozygote (K8(+/-)) mice showing increased proliferation but no inflammation. K8(-/-) mice did not develop CRC spontaneously, but had dramatically increased numbers of tumors in the distal colon in the azoxymethane (AOM) and Apc(Min/+) CRC models while neither K8(+/+) nor K8(+/-) mice were susceptible. Upregulation of IL-22 in combination with a complete loss of its negative regulator IL-22BP, and increased downstream STAT3-signaling in K8(-/-) and K8(-/-)Apc(Min/+) colonic epithelia confirmed that the IL-22 pathway, important in inflammation, proliferation and tissue regeneration, was activated. The nearly total loss of IL-22BP correlated with an activated inflammasome leading to increased cleaved caspase-1, and the putative IL-22BP inhibitor, IL-18, as well as a decrease in ALDH1/2. Ablation of K8 in a colorectal cancer cell line similarly resulted in increased IL-18 and decreased ALDH1/2. K8/K18 co-immunoprecipitated with pro-caspase-1, a component of the inflammasome in the colon, which suggests that keratins modulate inflammasome activity and protect the colon from inflammation and tumorigenesis. The K8-null mouse models also provide novel epithelial-derived robust colon-specific CRC models.


Subject(s)
Colorectal Neoplasms/genetics , Interleukins/genetics , Keratin-8/genetics , Neoplasms, Experimental/genetics , Aldehyde Dehydrogenase 1 Family , Animals , Colitis/genetics , Colitis/pathology , Colorectal Neoplasms/pathology , Humans , Inflammasomes/genetics , Inflammation/genetics , Inflammation/pathology , Interleukins/metabolism , Intestinal Mucosa/pathology , Isoenzymes/genetics , Mice , Mice, Knockout , Neoplasms, Experimental/pathology , Retinal Dehydrogenase/genetics , Sequence Deletion , Interleukin-22
6.
Front Pharmacol ; 6: 196, 2015.
Article in English | MEDLINE | ID: mdl-26441653

ABSTRACT

Intracellular 3'-5'-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming-all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control-something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.

SELECTION OF CITATIONS
SEARCH DETAIL
...