Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(2): 126818, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31771800

ABSTRACT

GTP cyclohydrolase (GCYH-I) is an enzyme in the folate biosynthesis pathway that has not been previously exploited as an antibiotic target, although several pathogens including N. gonorrhoeae use a form of the enzyme GCYH-IB that is structurally distinct from the human homologue GCYH-IA. A comparison of the crystal structures of GCYH-IA and -IB with the nM inhibitor 8-oxo-GTP bound shows that the active site of GCYH-IB is larger and differently shaped. Based on this structural information, we designed and synthesized a small set of 8-oxo-G derivatives with ether linkages at O6 and O8 expected to displace water molecules from the expanded active site of GCYH-IB. The most potent of these compounds, G3, is selective for GCYH-IB, supporting the premise that potent and selective inhibitors of GCYH-IB could constitute a new class of small molecule antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , GTP Cyclohydrolase/chemistry , Guanosine/antagonists & inhibitors , Anti-Bacterial Agents/therapeutic use , Guanosine/analogs & derivatives , Humans , Molecular Structure , Structure-Activity Relationship
2.
Nucleic Acids Res ; 47(12): 6551-6567, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31114923

ABSTRACT

The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC-AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.5-Å crystal structure of the T. maritima TC-transfer complex (TmTsaB2D2E2) bound to Mg2+-ATP in the ATPase site, and substrate analog carboxy-AMP in the TC-transfer site. Site directed mutagenesis results show that residues in the conserved Switch I and Switch II motifs of TsaE mediate the ATP hydrolysis-driven reactivation/reset step of the t6A cycle. Further, SAXS analysis of the TmTsaB2D2-tRNA complex in solution reveals bound tRNA lodged in the TsaE binding cavity, confirming our previous biochemical data. Based on the crystal structure and molecular docking of TC-AMP and adenine-37 in the TC-transfer site, we propose a model for the mechanism of TC transfer by this universal biosynthetic system.


Subject(s)
Adenosine/analogs & derivatives , Bacterial Proteins/chemistry , RNA, Transfer/metabolism , Adenosine/biosynthesis , Adenosine Triphosphatases/genetics , Amino Acid Motifs , Bacterial Proteins/genetics , Models, Molecular , Mutagenesis , Protein Conformation , RNA, Transfer/chemistry , Thermotoga maritima
3.
Biochem J ; 474(6): 1017-1039, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28126741

ABSTRACT

Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.


Subject(s)
Bacterial Proteins/chemistry , GTP Cyclohydrolase/chemistry , Guanosine Triphosphate/analogs & derivatives , Neisseria gonorrhoeae/chemistry , Tromethamine/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , GTP Cyclohydrolase/antagonists & inhibitors , GTP Cyclohydrolase/genetics , GTP Cyclohydrolase/metabolism , Gene Expression , Guanosine Triphosphate/chemistry , Kinetics , Models, Molecular , Mutation , Neisseria gonorrhoeae/enzymology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Nitrosothiols/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...