Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0300702, 2024.
Article in English | MEDLINE | ID: mdl-38696377

ABSTRACT

The objective of the current investigation was to evaluate the induction of heat shock proteins (HSPs) in SP2/0 transgenic cells and the effect of these proteins on the production of monoclonal antibodies (mAbs). The SP2/0 cell line expressing the PSG-026 antibody, a biosimilar candidate of golimumab, the culture parameters, and the target protein expression were not justified for industrial production and were used for the experiments. Paracetamol and heat shock were used as chemical and physical inducers of HSPs, respectively. The results showed that paracetamol and heat shock increased the expression of HSP70 and HSP27 at the mRNA and protein levels. The expression of HSPs was greater in paracetamol-treated cells than in heat shock-treated cells. Paracetamol treatment at concentrations above 0.5 mM significantly reduced cell viability and mAb expression. However, treatment with 0.25 mM paracetamol results in delayed cell death and increased mAb production. Heat shock treatment at 45°C for 30 minutes after enhanced mAb expression was applied after pre-treatment with paracetamol. In bioreactor cultures, pretreatment of cells with paracetamol improved cell viability and shortened the lag phase, resulting in increased cell density. The production of mAbs in paracetamol-treated cultures was markedly greater than that in the control. Analysis of protein quality and charge variants revealed no significant differences between paracetamol-treated and control cultures, indicating that the induction of HSPs did not affect protein aggregation or charge variants. These findings suggest that inducing and manipulating HSP expression can be a valuable strategy for improving recombinant protein production in biopharmaceutical processes.


Subject(s)
Acetaminophen , Antibodies, Monoclonal , Cell Survival , Antibodies, Monoclonal/pharmacology , Animals , Acetaminophen/pharmacology , Cell Survival/drug effects , Mice , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Bioreactors , Heat-Shock Response/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Cell Line
2.
3 Biotech ; 13(9): 306, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37605761

ABSTRACT

In this research, for the first time, A. flavus uricase gene was cloned in pPink-UOX plasmid under strong alcohol oxidase promoter of Pichia pink expression system after codon optimization. After selecting the best uricase producing clone with an activity of 0.7 U/ml at the Flask level, a 5-L fermenter was used to increase the expression of the enzyme. Within 60 h, the fermentation process produced 1500 g of biomass from 4 L of semi defined culture media and expressed 2.5 g/L of the enzyme. The purity of recombinant uricase production using three consecutive DEAE Sepharose, CM Sepharose and Phenyl Sepharose columns was above 99%, which was confirmed by SDS-PAGE and RP-HPLC analyses. Size exclusion chromatography analysis showed that the purified enzyme has comparable heterogeneity to the Rasburicase. The yield of recombinant uricase production in this study was 63% and its specific activity was 24 U/mg. The high expression of recombinant uricase in the Pichia pink strain and the increased enzyme activity compared to the standard sample indicate the potential of therapeutic and diagnostic applications of recombinant uricase in the present study.

SELECTION OF CITATIONS
SEARCH DETAIL
...