Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 6(3): fcae165, 2024.
Article in English | MEDLINE | ID: mdl-38799618

ABSTRACT

Studies of intracranial EEG networks have been used to reveal seizure generators in patients with drug-resistant epilepsy. Intracranial EEG is implanted to capture the epileptic network, the collection of brain tissue that forms a substrate for seizures to start and spread. Interictal intracranial EEG measures brain activity at baseline, and networks computed during this state can reveal aberrant brain tissue without requiring seizure recordings. Intracranial EEG network analyses require choosing a reference and applying statistical measures of functional connectivity. Approaches to these technical choices vary widely across studies, and the impact of these technical choices on downstream analyses is poorly understood. Our objective was to examine the effects of different re-referencing and connectivity approaches on connectivity results and on the ability to lateralize the seizure onset zone in patients with drug-resistant epilepsy. We applied 48 pre-processing pipelines to a cohort of 125 patients with drug-resistant epilepsy recorded with interictal intracranial EEG across two epilepsy centres to generate intracranial EEG functional connectivity networks. Twenty-four functional connectivity measures across time and frequency domains were applied in combination with common average re-referencing or bipolar re-referencing. We applied an unsupervised clustering algorithm to identify groups of pre-processing pipelines. We subjected each pre-processing approach to three quality tests: (i) the introduction of spurious correlations; (ii) robustness to incomplete spatial sampling; and (iii) the ability to lateralize the clinician-defined seizure onset zone. Three groups of similar pre-processing pipelines emerged: common average re-referencing pipelines, bipolar re-referencing pipelines and relative entropy-based connectivity pipelines. Relative entropy and common average re-referencing networks were more robust to incomplete electrode sampling than bipolar re-referencing and other connectivity methods (Friedman test, Dunn-Sidák test P < 0.0001). Bipolar re-referencing reduced spurious correlations at non-adjacent channels better than common average re-referencing (Δ mean from machine ref = -0.36 versus -0.22) and worse in adjacent channels (Δ mean from machine ref = -0.14 versus -0.40). Relative entropy-based network measures lateralized the seizure onset hemisphere better than other measures in patients with temporal lobe epilepsy (Benjamini-Hochberg-corrected P < 0.05, Cohen's d: 0.60-0.76). Finally, we present an interface where users can rapidly evaluate intracranial EEG pre-processing choices to select the optimal pre-processing methods tailored to specific research questions. The choice of pre-processing methods affects downstream network analyses. Choosing a single method among highly correlated approaches can reduce redundancy in processing. Relative entropy outperforms other connectivity methods in multiple quality tests. We present a method and interface for researchers to optimize their pre-processing methods for deriving intracranial EEG brain networks.

2.
Neurology ; 102(12): e209451, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38820468

ABSTRACT

BACKGROUND AND OBJECTIVES: Postoperative seizure control in drug-resistant temporal lobe epilepsy (TLE) remains variable, and the causes for this variability are not well understood. One contributing factor could be the extensive spread of synchronized ictal activity across networks. Our study used novel quantifiable assessments from intracranial EEG (iEEG) to test this hypothesis and investigated how the spread of seizures is determined by underlying structural network topological properties. METHODS: We evaluated iEEG data from 157 seizures in 27 patients with TLE: 100 seizures from 17 patients with postoperative seizure control (Engel score I) vs 57 seizures from 10 patients with unfavorable surgical outcomes (Engel score II-IV). We introduced a quantifiable method to measure seizure power dynamics within anatomical regions, refining existing seizure imaging frameworks and minimizing reliance on subjective human decision-making. Time-frequency power representations were obtained in 6 frequency bands ranging from theta to gamma. Ictal power spectrums were normalized against a baseline clip taken at least 6 hours away from ictal events. Electrodes' time-frequency power spectrums were then mapped onto individual T1-weighted MRIs and grouped based on a standard brain atlas. We compared spatiotemporal dynamics for seizures between groups with favorable and unfavorable surgical outcomes. This comparison included examining the range of activated brain regions and the spreading rate of ictal activities. We then evaluated whether regional iEEG power values were a function of fractional anisotropy (FA) from diffusion tensor imaging across regions over time. RESULTS: Seizures from patients with unfavorable outcomes exhibited significantly higher maximum activation sizes in various frequency bands. Notably, we provided quantifiable evidence that in seizures associated with unfavorable surgical outcomes, the spread of beta-band power across brain regions is significantly faster, detectable as early as the first second after seizure onset. There was a significant correlation between beta power during seizures and FA in the corresponding areas, particularly in the unfavorable outcome group. Our findings further suggest that integrating structural and functional features could improve the prediction of epilepsy surgical outcomes. DISCUSSION: Our findings suggest that ictal iEEG power dynamics and the structural-functional relationship are mechanistic factors associated with surgical outcomes in TLE.


Subject(s)
Drug Resistant Epilepsy , Electroencephalography , Epilepsy, Temporal Lobe , Humans , Male , Female , Adult , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Treatment Outcome , Middle Aged , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Young Adult , Magnetic Resonance Imaging , Seizures/surgery , Seizures/physiopathology , Brain/physiopathology , Brain/surgery , Brain/diagnostic imaging , Electrocorticography/methods , Adolescent
3.
Epilepsy Behav ; 149: 109503, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37931391

ABSTRACT

OBJECTIVE: This proof-of-concept study aimed to examine the overlap between structural and functional activity (coupling) related to surgical response. METHODS: We studied intracranial rest and ictal stereoelectroencephalography (sEEG) recordings from 77 seizures in thirteen participants with temporal lobe epilepsy (TLE) who subsequently underwent resective/laser ablation surgery. We used the stereotactic coordinates of electrodes to construct functional (sEEG electrodes) and structural connectomes (diffusion tensor imaging). A Jaccard index was used to assess the similarity (coupling) between structural and functional connectivity at rest and at various intraictal timepoints. RESULTS: We observed that patients who did not become seizure free after surgery had higher connectome coupling recruitment than responders at rest and during early and mid seizure (and visa versa). SIGNIFICANCE: Structural networks provide a backbone for functional activity in TLE. The association between lack of seizure control after surgery and the strength of synchrony between these networks suggests that surgical intervention aimed to disrupt these networks may be ineffective in those that display strong synchrony. Our results, combined with findings of other groups, suggest a potential mechanism that explains why certain patients benefit from epilepsy surgery and why others do not. This insight has the potential to guide surgical planning (e.g., removal of high coupling nodes) following future research.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Diffusion Tensor Imaging , Treatment Outcome , Seizures , Electroencephalography
4.
medRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168158

ABSTRACT

Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal (between-seizure) intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-center study for model development; two-center study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using interictal EEG. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. 47 patients (30 women; ages 20-69; 20 left-sided, 10 right-sided, and 17 bilateral seizure onsets) were analyzed for model development and internal validation. 19 patients (10 women; ages 23-73; 5 left-sided, 10 right-sided, 4 bilateral) were analyzed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome.

5.
Med Sci Sports Exerc ; 52(8): 1699-1709, 2020 08.
Article in English | MEDLINE | ID: mdl-32102062

ABSTRACT

INTRODUCTION: Although exercise is a safe, cost-effective, and therapeutic poststroke therapy, the proper time window and dosage of exercise are still unknown. We aim to determine the optimal combination of time window and intensity of exercise by assessing infarct volume, neurological recovery, and underlying mechanisms in middle cerebral artery occlusion rats. METHODS: The study contains two parts: the time-window and the dosage experiments. The time-window experiment assessed the effects of moderate-intensity exercise that was initiated at 24, 48, 72, 96 h and the control. In the dosage experiment, moderate and another two intensity exercise groups (low, high) were assessed. Forced wheel running was the exercise technique used. Infarct volume and neurological function (modified neurological severity scores [mNSS]) were measured. Inflammatory cytokines, cell death, and proliferation were further detected in the ischemic penumbra. RESULTS: The time window part revealed that neither infarct volume nor mNSS was reduced in the exercise group initiated at 24 h. The other three groups with exercise initiated after 24 h had reduced infarct volume and reduced mNSS but those outcomes do not differ from each other. In the dosage part, the low- and moderate-intensity groups with exercise initiated at 48 h were both better than the high-intensity group in terms of infarct volume and mNSS at 14 d; however, there was no statistical difference between these low and moderate groups. Exercise initiated at 24 h or high-intensity promoted proinflammatory cytokines and cell death. CONCLUSIONS: Exercise at 24 h is harmful. Low- and moderate-intensity exercise initiated at 48 h poststroke appears to be the optimal combination for maximal functional recovery.


Subject(s)
Brain Infarction/rehabilitation , Exercise Therapy/methods , Animals , Apoptosis , Autophagy , Brain Infarction/pathology , Brain Infarction/physiopathology , Cytokines/blood , Disease Models, Animal , Male , Necrosis , RNA, Messenger/blood , Rats, Sprague-Dawley , Recovery of Function , Time Factors
6.
Nat Neurosci ; 16(11): 1652-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121737

ABSTRACT

In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.


Subject(s)
Brain/metabolism , Kynurenic Acid/metabolism , Substance-Related Disorders , Analgesics/administration & dosage , Animals , Benzoxazines/administration & dosage , Cannabinoid Receptor Agonists/pharmacology , Conditioning, Operant/drug effects , Cues , Discrimination, Psychological/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Dronabinol/pharmacology , Drug-Seeking Behavior/drug effects , Male , Memory, Short-Term/drug effects , Morpholines/administration & dosage , Naphthalenes/administration & dosage , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Reinforcement, Psychology , Saimiri , Secondary Prevention , Self Administration , Substance-Related Disorders/drug therapy , Substance-Related Disorders/metabolism , Substance-Related Disorders/pathology , Sulfonamides/pharmacology , Thiazoles/pharmacology , Time Factors , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...