Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(11): 3801-3815, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37074382

ABSTRACT

The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.


Subject(s)
Bacteriophages , Solanum lycopersicum , Pseudomonas syringae , Bacteriophages/genetics , Plant Diseases/prevention & control , Plants
2.
J Food Sci ; 87(11): 4839-4853, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36250503

ABSTRACT

Pulsed electric field (PEF) and osmotic dehydration (OD) pretreatment can accelerate the time-consuming drying process and minimize its high energy demands. The effect of PEF and OD pre-processing conditions and osmotic solution composition on mass transfer kinetics (water loss, solid gain, water activity) and quality properties (color, texture, total sensory quality) during OD and subsequent air-drying (AD) of pumpkin was studied. Application of PEF (2.0 kV/cm-1500 pulses) significantly enhanced mass transfer during subsequent air-drying (increased effective diffusivity coefficient Des and drying rate kdrying , respectively). PEF and OD treatments led to a significant reduction of the processing time by 12 and 10%, respectively (p < 0.05). The maximum reduction of processing time by 27% (p < 0.05) (compared to untreated sample) resulted in combined use of PEF and OD as pretreatments prior to AD. When PEF pretreatment was combined with OD prior to AD, the corresponding energy was by 50% less than the respective energy required for nonprocessed samples. PRACTICAL APPLICATION: Pulsed electric fields (PEF) and osmotic dehydration (OD) can be applied for the production of air-dried pumpkin cuts of superior quality (in terms of quality and sensory characteristics) and reduced energy requirements (as a result of total processing time decrease).


Subject(s)
Cucurbita , Dehydration , Osmosis , Desiccation/methods , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...