Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(3): 92, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38367085

ABSTRACT

A facile and cost-effective hydrothermal followed by precipitation method is employed to synthesize visible light-driven ZnS-Ag ternary composites supported on carbon aerogel (CA). Extensive studies were conducted on the structural, morphological, and optical properties, confirming the successful formation of ternary nanocomposites. The obtained results evidently demonstrate the successful loading of ZnS and Ag onto the surface of the CA. High-resolution transmission electron microscopy analysis revealed that ZnS and Ag nanoparticles (AgNPs) were uniformly distributed on the surface of the CA with an average diameter of 18 nm. The biomass-derived CA, containing a hierarchical porous nano-architecture and an abundant number of -NH2 functional groups on the surface, can greatly prevent the agglomeration, stability and reduce particle size. Brunauer-Emmett-Teller analysis results indicated specific surface areas of 4.62 m2 g-1 for the CA, 48.50 m2 g-1 for the CA/ZnS composite, and 62.62 m2 g-1 for the CA/ZnS-Ag composite. These values demonstrate an increase in surface area upon the incorporation of ZnS and Ag into the CA matrix. Under visible light irradiation, the synthesized CA/ZnS-Ag composites displayed remarkably improved photodegradation efficiency of methylene blue (MB). Among the tested samples, the CA/ZnS-Ag composites exhibited the highest percentage of photodegradation efficiency, surpassing ZnS, CA, and CA/ZnS. The obtained percentages of degradation efficiency for CA, ZnS, CA/ZnS, and CA/ZnS-Ag composites were determined as 26.60%, 52.12%, 68.39%, and 98.64%, respectively. These results highlight the superior photocatalytic performance of the CA/ZnS-Ag composites in the degradation of MB under visible light conditions. The superior efficiency of the CA/ZnS-Ag composite can be attributed to multiple factors, including its elevated specific surface area, inhibition of electron-hole pair recombination, and enhanced photon absorption within the visible light spectrum. The CA/ZnS-Ag composites displayed consistent efficiency over multiple cycles, confirming their stable performance, reusability, and enduring durability, thereby showcasing the robust nature of this composite material.


Subject(s)
Carbon , Metal Nanoparticles , Methylene Blue/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Biomass , Light
2.
Article in English | MEDLINE | ID: mdl-37314553

ABSTRACT

Organic pollutants such as dyes and pharmaceutical drugs have become a significant environmental problem due to their unrestricted discharge, especially in water bodies. As a result, an economically viable and environmentally friendly approach to their degradation in water bodies is required and the incorporation of metal tungstate with single metal oxide has attracted attention due to its potential ability towards the photocatalytic degradation of pollutants. The work demonstrates a WO3/g-C3N4/V2O5 nanocomposite synthesized using a facile route wet impregnation method. The results revealed that WO3/g-C3N4/V2O5 nanocomposites are suitable, mainly for their better surface properties, enhanced visible-light absorption, and preferred band positions. Besides that, the degradation of methylene blue (MB) dye is carried out and demonstrated that the complete degradation occurs over 120 min using 10 mg L-1 of WO3/g-C3N4/V2O5 nanocomposite under UV-visible-light irradiation. The scavenger experimental result implies that the photogenerated free electrons and superoxide radials are important role in MB dye degradation. In addition, a possible mechanism is proposed for the photocatalytic activity of WO3/g-C3N4/V2O5 nanocomposite. Moreover, the stability analysis demonstrated that the WO3/g-C3N4/V2O5 nanocomposite can be recycled multiple times.

3.
Chemosphere ; 334: 138979, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37236279

ABSTRACT

The present study, reports a facile approach for the synthesis of FeWO4/FeS2 nanocomposites were demonstrated through hydrothermal method. The surface morphology, crystalline structure, chemical composition, optical properties of the prepared samples was analysed by different various technique. The result observed analysis indicates that, the formation of heterojunction by 2:1wt% of FeWO4/FeS2 nanohybrid has the lowest recombination rate of electron-hole pairs and the least electron transfer resistance. Due to its the broad absorption spectral range and preferable energy band gap, the (2:1) FeWO4/FeS2 nanohybrid photocatalyst exhibits an excellent ability to remove MB dye when exposed to UV-Vis. Light irradiation. Its photocatalytic activity of (2:1) FeWO4/FeS2 nanohybrid is higher than other as prepared samples due to its synergistic effects, enhanced light absorption and high charge carrier separation. Radical trapping experimental result implies that the photo-generated free electrons and hydroxyl radials are essential to degrade the MB dye. Furthermore, a possible future mechanism for FeWO4/FeS2 nanocomposites photocatalytic activity was discussed. Moreover, the recyclability analysis demonstrated that the FeWO4/FeS2 nanocomposites can be recycled multiple times. The enhanced photocatalytic activity of 2:1 FeWO4/FeS2 nanocomposites is promising for the further application of visible light driven photocatalyst in wastewater treatment.


Subject(s)
Light , Nanocomposites , Coloring Agents , Nanocomposites/chemistry
4.
Article in English | MEDLINE | ID: mdl-37016260

ABSTRACT

Herein, a Bi2S3/Cu2S was successfully synthesized via a simple one-step wet impregnation process. The compositional behavior and electrical and optical properties of photocatalysts were investigated in detail. Photocatalytic technology has shown great promise in wastewater treatment, splitting water to hydrogen, and converting CO2 to fuel. Researchers or scientist are attempting to design sulfate-based heterojunction photocatalytic systems in order to develop novel photocatalysts with excellent performance. Photodegradation of methylene blue (MB) dye and tetracycline (TC) drug under visible light irradiation was used to assess the photocatalytic activity of as-prepared samples. As a result, 2:1% wt of Bi2S3/Cu2S heterostructure composite revealed superior visible light degradation performing of MB dye, and TC drug efficiency as 90.2% and 87.5%, respectively. The prepared hybrid photocatalyst has demonstated a potential for use in the photocatalytic degradation of antibiotic durgs and dyes, indicating a promissing future for its application.

5.
Article in English | MEDLINE | ID: mdl-36905548

ABSTRACT

Copper oxide nanoparticles (CuO NPs) are among the most commonly employed nanoparticle materials owing to their antibacterial qualities, although their primary mechanism of action (MOA) is still not completely understood. CuO NPs are synthesized in this study using leaf extract of Tabernaemontana divaricate (TDCO3), and they are then analyzed using XRD, FT-IR, SEM, and EDX analysis. The zone of inhibition of TDCO3 NPs against both gram-positive (G+) B. subtilis and gram-negative (G-) K. pneumoniae bacteria was 34 mm and 33 mm, respectively. Furthermore, Cu2+/Cu+ ions promote reactive oxygen species and electrostatically bind with the negatively charged teichoic acid in the bacterial cell wall. The anti-inflammatory and anti-diabetics analysis was conducted using standard BSA denaturation and α-amylase inhibition technique with cell inhibition values of 85.66 and 81.18% for TDCO3 NPs. Additionally, the TDCO3 NPs delivered prominent anticancer activity with the lowest IC50 value 18.2 µg/mL in the MTT assay technique against HeLa cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...