Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Alcohol Depend ; 250: 110898, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37523916

ABSTRACT

BACKGROUND: Our group has established the feasibility of using on-body electrocardiographic (ECG) sensors to detect cocaine use in the human laboratory. The purpose of the current study was to test whether ECG sensors and features are capable of discriminating cocaine use from other non-cocaine sympathomimetics. METHODS: Eleven subjects with cocaine use disorder wore the Zephyr BioHarness™ 3 chest band under six experimental (drug and non-drug) conditions, including 1) laboratory, intravenous cocaine self-administration, 2) after a single oral dose of methylphenidate, 3) during aerobic exercise, 4) during tobacco use (N=7 who smoked tobacco), and 5) during routine activities of daily inpatient living (unit activity). Three ECG-derived feature sets served as primary outcome measures, including 1) the RR interval (i.e., heart rate), 2) a group of ECG interval proxies (i.e., PR, QS, QT and QTc intervals), and 3) the full ECG waveform. Discriminatory power between cocaine and non-cocaine conditions for each of the three outcomes measures was expressed as the area under the receiver operating characteristics (AUROC) curve. RESULTS: All three outcomes successfully discriminated cocaine use from unit activity, exercise, tobacco, and methylphenidate conditions with a mean AUROC values ranging from 0.66 to 0.99 and with least squares means values all statistically different/higher than 0.5 among all subjects [F(3, 99) = 3.38, p =0.02] and among those with tobacco use [F(4, 84) = 5.39, p = 0.0007]. CONCLUSIONS: These preliminary results support discriminatory power of wearable ECG sensors for detecting cocaine use.


Subject(s)
Cocaine-Related Disorders , Cocaine , Methylphenidate , Wearable Electronic Devices , Humans , Sympathomimetics , Electrocardiography , Cocaine-Related Disorders/diagnosis
2.
JMLR Workshop Conf Proc ; 48: 334-343, 2016 06.
Article in English | MEDLINE | ID: mdl-28090606

ABSTRACT

The field of mobile health (mHealth) has the potential to yield new insights into health and behavior through the analysis of continuously recorded data from wearable health and activity sensors. In this paper, we present a hierarchical span-based conditional random field model for the key problem of jointly detecting discrete events in such sensor data streams and segmenting these events into high-level activity sessions. Our model includes higher-order cardinality factors and inter-event duration factors to capture domain-specific structure in the label space. We show that our model supports exact MAP inference in quadratic time via dynamic programming, which we leverage to perform learning in the structured support vector machine framework. We apply the model to the problems of smoking and eating detection using four real data sets. Our results show statistically significant improvements in segmentation performance relative to a hierarchical pairwise CRF.

3.
MobiSys ; 2014: 149-161, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26688835

ABSTRACT

Smoking-induced diseases are known to be the leading cause of death in the United States. In this work, we design RisQ, a mobile solution that leverages a wristband containing a 9-axis inertial measurement unit to capture changes in the orientation of a person's arm, and a machine learning pipeline that processes this data to accurately detect smoking gestures and sessions in real-time. Our key innovations are fourfold: a) an arm trajectory-based method that extracts candidate hand-to-mouth gestures, b) a set of trajectory-based features to distinguish smoking gestures from confounding gestures including eating and drinking, c) a probabilistic model that analyzes sequences of hand-to-mouth gestures and infers which gestures are part of individual smoking sessions, and d) a method that leverages multiple IMUs placed on a person's body together with 3D animation of a person's arm to reduce burden of self-reports for labeled data collection. Our experiments show that our gesture recognition algorithm can detect smoking gestures with high accuracy (95.7%), precision (91%) and recall (81%). We also report a user study that demonstrates that we can accurately detect the number of smoking sessions with very few false positives over the period of a day, and that we can reliably extract the beginning and end of smoking session periods.

SELECTION OF CITATIONS
SEARCH DETAIL
...