Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 15(9): 7285-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716325

ABSTRACT

TiO2-SiO2 mixed oxide photocatalyst materials responsive to simulated solar light illumination have been synthesized by sol-gel method in various polar and nonpolar organic solvent mixtures. The photocatalysts were characterized by numerous experimental techniques and investigated for the photocatalytic conversion of CO2 to CH4. The TiO2-SiO2 mixed oxide photocatalysts prepared in the presence of nonpolar aromatic solvents such as xylene, toluene or benzene along with ethanol show high surface area, huge mesoporosity and enormous pore volume compared to the materials conventionally synthesized in a mixture of ethanol and hexane. The TiO2-SiO2 mixed oxide photocatalyst prepared in benzene along with ethanol yields 21.0 ppm g(-1) h(-1) of methane production; however the material synthesized in hexane shows negligible amount of methane production under simulated solar light irradiation. These results indicate that aromatic nonpolar solvents can tune the textural properties of photocatalysts compared to non-polar aliphatic solvents.

2.
Photochem Photobiol Sci ; 12(5): 798-804, 2013 May.
Article in English | MEDLINE | ID: mdl-23354524

ABSTRACT

Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal self-assembly of a single peptide (D,D-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo[5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the as-prepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Sn-porphyrin-impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.


Subject(s)
DNA/chemistry , Nanotubes, Carbon/chemistry , Peptides/chemistry , Porphyrins/chemistry , Tin/chemistry , Biosensing Techniques , DNA/analysis , Electrophoretic Mobility Shift Assay , Hydrogen Bonding , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...