Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 109(23): 230401, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368168

ABSTRACT

We observe matter wave interference of a single cesium atom in free fall. The interferometer is an absolute sensor of acceleration and we show that this technique is sensitive to forces at the level of 3.2×10(-27) N with a spatial resolution at the micron scale. We observe the build up of the interference pattern one atom at a time in a free-space interferometer where the mean path separation extends far beyond the coherence length of the atom. Using the coherence length of the atom wave packet as a metric, we directly probe the velocity distribution and measure the temperature of a single atom in free fall.

2.
Phys Rev Lett ; 106(19): 193201, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668156

ABSTRACT

Controlling interactions between cold molecules using external fields can elucidate the role of quantum mechanics in molecular collisions. We create a new experimental platform in which ultracold rubidium atoms and cold ammonia molecules are separately trapped by magnetic and electric fields and then combined to study collisions. We observe inelastic processes that are faster than expected from earlier field-free calculations. We use quantum scattering calculations to show that electric fields can have a major effect on collision outcomes, even in the absence of dipole-dipole interactions.

3.
Phys Rev Lett ; 103(3): 034301, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19659284

ABSTRACT

The 1:1:2 resonant elastic pendulum is a simple classical system that displays the phenomenon known as Hamiltonian monodromy. With suitable initial conditions, the system oscillates between nearly pure springing and nearly pure elliptical-swinging motions, with sequential major axes displaying a stepwise precession. The physical consequence of monodromy is that this stepwise precession is given by a smooth but multivalued function of the constants of motion. We experimentally explore this multivalued behavior. To our knowledge, this is the first experimental demonstration of classical monodromy.

SELECTION OF CITATIONS
SEARCH DETAIL
...