Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 366(6470)2019 12 06.
Article in English | MEDLINE | ID: mdl-31806788

ABSTRACT

Lava flows present a recurring threat to communities on active volcanoes, and volumetric eruption rate is one of the primary factors controlling flow behavior and hazard. The time scales and driving forces of eruption rate variability, however, remain poorly understood. In 2018, a highly destructive eruption occurred on the lower flank of Kilauea Volcano, Hawai'i, where the primary vent exhibited substantial cyclic eruption rates on both short (minutes) and long (tens of hours) time scales. We used multiparameter data to show that the short cycles were driven by shallow outgassing, whereas longer cycles were pressure-driven surges in magma supply triggered by summit caldera collapse events 40 kilometers upslope. The results provide a clear link between eruption rate fluctuations and their driving processes in the magmatic system.

2.
Science ; 363(6425): 367-374, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30538164

ABSTRACT

In 2018, Kilauea Volcano experienced its largest lower East Rift Zone (LERZ) eruption and caldera collapse in at least 200 years. After collapse of the Pu'u 'O'o vent on 30 April, magma propagated downrift. Eruptive fissures opened in the LERZ on 3 May, eventually extending ~6.8 kilometers. A 4 May earthquake [moment magnitude (M w) 6.9] produced ~5 meters of fault slip. Lava erupted at rates exceeding 100 cubic meters per second, eventually covering 35.5 square kilometers. The summit magma system partially drained, producing minor explosions and near-daily collapses releasing energy equivalent to M w 4.7 to 5.4 earthquakes. Activity declined rapidly on 4 August. Summit collapse and lava flow volume estimates are roughly equivalent-about 0.8 cubic kilometers. Careful historical observation and monitoring of Kilauea enabled successful forecasting of hazardous events.

3.
Sci Rep ; 8(1): 9179, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29907745

ABSTRACT

Spatter is a common pyroclastic product of hawaiian fountaining, which typically forms vent-proximal ramparts or cones. Based on textural characteristics and field relations of spatter from the 1969 Mauna Ulu eruption of Kilauea, Hawai'i, three spatter types were identified: (1) Primary spatter deposited as spatter ramparts and isolated cones during the peak of episode 1; (2) Late-stage spatter comprising dense, small volume, vent proximal deposits, formed at the end of episode 1; (3) Secondary spatter preserved in isolated mounds around tectonic ground cracks that we interpret to have formed by the disruption of overlying lava. We propose that not all spatter deposits are evidence of primary magmatic fountaining. Rather, deposits can be "secondary" in nature and associated with lava drain-back, disruption, and subsequent ejection from tectonic cracks. Importantly, these secondary pyroclastic deposits are difficult to distinguish from primary eruptive features based on field relations and bulk clast vesicularity alone, allowing for the potential misinterpretation of eruption vents, on Earth and in remotely sensed planetary data, thereby misinforming hazard maps and probabilistic assessments. Here, we show that vesicle number density provides a statistically-robust metric by which to discriminate primary and secondary spatter, supporting accurate identification of eruptive vents.

SELECTION OF CITATIONS
SEARCH DETAIL
...