Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 14(6): 645-662, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30702807

ABSTRACT

Since the discovery of a flavin-dependent thymidylate synthase (ThyX or FDTS) that is absent in humans but crucial for DNA biosynthesis in a diverse group of pathogens, the enzyme has been pursued for the development of new antibacterial agents against Mycobacterium tuberculosis, the causative agent of the widespread infectious disease tuberculosis (TB). In response to a growing need for more effective anti-TB drugs, we have built upon our previous screening efforts and report herein an optimization campaign of a novel series of inhibitors with a unique inhibition profile. The inhibitors display competitive inhibition toward the methylene tetrahydrofolate cofactor of ThyX, enabling us to generate a model of the compounds bound to their target, thus offering insight into their structure-activity relationships.


Subject(s)
Enzyme Inhibitors , Mycobacterium tuberculosis/drug effects , Oxazines , Thymidylate Synthase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Oxazines/chemical synthesis , Oxazines/chemistry , Oxazines/pharmacology , Structure-Activity Relationship
2.
ChemMedChem ; 8(8): 1373-83, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23836539

ABSTRACT

The urgent need for new antibiotics poses a challenge to target un(der)exploited vital cellular processes. Thymidylate biosynthesis is one such process due to its crucial role in DNA replication and repair. Thymidylate synthases (TS) catalyze a crucial step in the biosynthesis of thymidine 5-triphosphate (TTP), an elementary building block required for DNA synthesis and repair. To date, TS inhibitors have only been successfully applied in anticancer therapy due to their lack of specificity for antimicrobial versus human enzymes. However, the discovery of a new family of TS enzymes (ThyX) in a range of pathogenic bacteria that is structurally and biochemically different from the "classic" TS (ThyA) has opened the possibility to develop selective ThyX inhibitors as potent antimicrobial drugs. Here, the interaction of the known inhibitor 5-(3-octanamidoprop-1yn-1yl)-2'-deoxyuridine-5'-monophosphate (1) with Mycobacterium tuberculosis ThyX enzyme is explored using molecular modeling starting from published crystal structures, with further confirmation through NMR experiments. While the deoxyuridylate (dUMP) moiety of compound 1 occupies the cavity of the natural substrate in ThyX, the rest of the ligand (the "5-alkynyl tail") extends to the outside of the enzyme between two of its four subunits. The hydrophobic pocket that accommodates the alkyl part of the tail is formed by displacement of Tyr 44.C, Tyr 108.A and Lys 165.A. Changes to the resonance of the Lys 165 NH3 group upon ligand binding were monitored in a titration experiment by 2D HISQC NMR. Guided by the results of the modeling and NMR studies, and inspired by the success of acyclic antiviral nucleosides, compounds where a 5-alkynyl uracyl moiety is coupled to an acyclic nucleoside phosphonate (ANP) were synthesized and evaluated. Of the compounds evaluated, sodium (6-(5-(3-octanamidoprop-1-yn-1-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)hexyl)phosphonate (3 e) exhibited 43 % of inhibitory effect on ThyX at 50 µM. While only modest activity was achieved, this is the first example of an ANP inhibiting ThyX, and these results can be used to further guide structural modifications to this class to develop more potent compounds with potential application as antibacterial agents acting through a novel mechanism of action.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Phosphorous Acids/chemistry , Thymidylate Synthase/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Mutation , Mycobacterium tuberculosis/drug effects , Phosphorous Acids/metabolism , Protein Binding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Substrate Specificity , Thymidylate Synthase/genetics , Thymidylate Synthase/metabolism
3.
J Med Chem ; 54(13): 4847-62, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21657202

ABSTRACT

A series of 5-substituted 2'-deoxyuridine monophosphate analogues has been synthesized and evaluated as potential inhibitors of mycobacterial ThyX, a novel flavin-dependent thymidylate synthase in Mycobacterium tuberculosis. A systematic SAR study led to the identification of compound 5a, displaying an IC(50) value against mycobacterial ThyX of 0.91 µM. This derivative lacks activity against the classical mycobacterial thymidylate synthase ThyA (IC(50) > 50 µM) and represents the first example of a selective mycobacterial FDTS inhibitor.


Subject(s)
Antitubercular Agents/chemical synthesis , Deoxyuracil Nucleotides/chemical synthesis , Flavins/metabolism , Mycobacterium tuberculosis/enzymology , Thymidylate Synthase/antagonists & inhibitors , Antitubercular Agents/chemistry , Deoxyuracil Nucleotides/chemistry , Deoxyuracil Nucleotides/pharmacology , Structure-Activity Relationship , Thymidylate Synthase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...