Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Fluoresc ; 26(4): 1151-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27207570

ABSTRACT

A highly water-dispersible NaYF4:Ce/Tb (core), NaYF4:Ce/Tb@NaYF4(core/shell) and NaYF4:Ce/Tb@NaYF4@SiO2 (core/shell/SiO2) nanoparticles (NPs) were synthesized via a general synthesis approach. The growth of an inert NaYF4 and silica shell (~14 nm) around the core-NPs resulted in an increase of the average size of the nanopaticles as well as broadening of their size distribution. The optical band-gap energy slightly decreases after shell formation due to the increase the crystalline size. To optimize the influence of shell formation a comparative analysis of photoluminescence properties (excitation, emission, and luminescence decay time) of the core, core/shell, and core/shell/SiO2 NPs were measured. The emission intensity was significantly enhanced after inert shell formation around the surface of the core NPs. The Commission International de l'Eclairage chromaticity coordinates of the emission spectrum of core, core/shell, core/shell/SiO2 NPs lie closest to the standard green color emission at 545 nm. By quantitative spectroscopic measurements of surface-modified core-NPs, it was suggested that encapsulation with inert and silica layers was found to be effective in retaining both luminescence intensity and dispersibility in aqueous environment. Considering the high aqueous dispersion and enhanced luminescence efficiency of the core-NPs make them an ideal luminescent material for luminescence bioimaging and optical biosensors.

2.
Phys Chem Chem Phys ; 16(41): 22665-76, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25231483

ABSTRACT

Y2Ti2O7:Er(3+)/Yb(3+) (EYYTO) phosphors co-doped with Li(+) ions were synthesized by a conventional solid-state ceramic method. X-ray diffraction studies show that all the Li(+) co-doped EYYTO samples are highly crystalline in nature with pyrochlore face centred cubic structure. X-ray photon spectroscopy studies reveal that the incorporation of Li(+) ions creates the defects and/or vacancies associated with the sample surface. The effect of Li(+) ions on the photoluminescence up-conversion intensity of EYYTO was studied in detail. The up-conversion study under ∼976 nm excitation for different concentrations of Li(+) ions showed that the green and red band intensities were significantly enhanced. The 2 at% Li(+) ion co-doped EYYTO samples showed nearly 15- and 8-fold enhancements in green and red band up-converted intensities compared to Li(+) ion free EYYTO. The process involved in the up-conversion emission was evaluated in detail by pump power dependence, the energy level diagram, and decay analysis. The incorporation of Li(+) ions modified the crystal field around the Er(3+) ions, thus improving the up-conversion intensity. To investigate the sensing application of the synthesized phosphor materials, temperature-sensing performance was evaluated using the fluorescence intensity ratio technique. Appreciable temperature sensitivity was obtained using the synthesized phosphor material, indicating its applicability as a high-temperature-sensing probe. The maximum sensitivity was found to be 0.0067 K(-1) at 363 K.


Subject(s)
Erbium/chemistry , Lithium/chemistry , Titanium/chemistry , Ytterbium/chemistry , Energy Transfer , Ions , Luminescent Measurements , Spectrum Analysis, Raman , Temperature
3.
J Fluoresc ; 24(4): 1253-62, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24871035

ABSTRACT

CaMoO4:Pr(core), CaMoO4:Pr@CaMoO4 (core/shell) and CaMoO4:Pr@CaMoO4@SiO2 (core/shell/shell) nanoparticles were synthesized using polyol method. X-ray diffraction (XRD), thermogravimatric analysis (TGA), UV-vis absorption, optical band gap energy analysis, Fourier transform infrared (FTIR), FT-Raman and photoluminescence (PL) spectroscopy were employed to investigate the structural and optical properties of the synthesized core and core/shell nanoparticles. The results of the XRD indicate that the obtained core, core/shell and core/shell/shell nanoparticles crystallized well at ~150 °C in ethylene glycol (EG) under urea hydrolysis. The growth of the CaMoO4 and SiO2 shell (~12 nm) around the CaMoO4:Pr core nanoparticles resulted in an increase of the average size of the nanopaticles as well as in a broadening of their size distribution. These nanoparticles can be well-dispersed in distilled water to form clear colloidal solutions. The photoluminescence spectra of core, core/shell and core/shell/shell nanoparticles show the characteristic charge transfer emission band of MoO4 (2-) (533 nm) and Pr(3+) 4f(2) → 4f(2), with multiple strong (3)H4 → (3)P2, (1)D2 → (3)H4 and (3)P0 → (3) F2 transitions located at ~490, 605 and 652 nm, respectively. The emission intensity of the CaMoO4:Pr@CaMoO4 core/shell and CaMoO4:Pr@CaMoO4@SiO2 core/shell/shell nanoparticles increased ~4.5 and 1.7 times,respectively, with respect to those of CaMoO4:Pr core nanoparticles. This indicates that a significant amount of nonradiative centers existing on the surface of CaMoO4:Pr@CaMoO4 core/shell nanoparticles can be eliminated by the shielding effect of CaMoO4 shells.

4.
Article in English | MEDLINE | ID: mdl-24820319

ABSTRACT

A simple polyol method has been used for the synthesis of CaMoO4:Eu (core), CaMoO4:Eu@CaMoO4 (core/shell) and their silica coated CaMoO4:Eu@CaMoO4 (core/shell/shell) nanoparticles. X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), UV/Vis absorption and photoluminescence (PL) spectroscopies techniques has been employed for their characterization. XRD patterns and FT-Raman spectra showed that these nanoparticles have a scheelite-type tetragonal structure without the presence of deleterious phases. These nanoparticles were easily dispersed in water, producing a transparent colloidal solution. The optical energy band-gap decreases after core/shell formation due to increase the crystalline size. The photoluminescence (PL) spectra of the as-synthesized core, core/shell and core/shell/shell nanoparticles measured with an excitation source wavelength of 325nm showed that the emission intensity was increases after shell formation around the surface of core nanoparticles.


Subject(s)
Calcium/chemistry , Europium/chemistry , Luminescent Agents/chemistry , Molybdenum/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Cations/chemistry , Luminescence , Nanoparticles/ultrastructure , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Surface Properties , Thermogravimetry
5.
Dalton Trans ; 43(12): 4779-89, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24481378

ABSTRACT

We have studied the luminescence property of CaMoO4:Eu(3+). The emission peaks at 590 ((5)D0→(7)F1) and 613 nm ((5)D0→(7)F2) for Eu(3+) are observed after excitation at 266 nm (i.e. Mo-O charge transfer band). The peak intensity of the latter dominates over the former indicating an asymmetric environment of Eu(3+) in EuO8 polyhedron or parity mixing. Luminescence intensity increases significantly with co-doping of Gd(3+). This is ascribed to energy transfer from Mo-O/Gd(3+) to Eu(3+). Luminescence intensity increases with annealing up to 900 °C due to the extent of decrease of non-radiative rates. Very high asymmetric values (A21) of 12-16 are found indicating a red emitter. As-prepared samples are dispersible in polar solvents like water, ethanol, methanol, dimethyl sulfoxide (DMSO) and ethylene glycol (EG); and among them, optimum luminescence is found in methanol. Polymer film shows red emission. The quantum yields of as-prepared 2 and 10 at% Gd(3+) co-doped CaMoO4:Eu(3+) under 277 nm (UV excitation) are 21 and 80%, respectively.

6.
Dalton Trans ; 43(12): 4770-8, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24477200

ABSTRACT

A facile auto-combustion route is used for the synthesis of Gd(3+) (2, 5, 7 and 10 at%) co-doped CaMoO4:Eu nanoparticles. X-ray diffraction study suggests that as-prepared samples have extra impurity phases in addition to main tetragonal phase of CaMoO4, and such extra phases decrease as the annealing temperature increases from 600 to 900 °C. The crystal structure has been analysed using Rietveld program. It has space group I41/a (88) and Z = 4 (number of CaMoO4 formula units per unit cell). Average crystallite sizes of as-prepared, 600 and 900 °C annealed samples for 2 at% Gd(3+) are found to be ~33, 48 and 61 nm, respectively. The lattice strains of 5 at% Gd(3+) co-doped CaMoO4:Eu for as-prepared and 900 °C are 0.001 and 0.002, respectively. Fourier transform infrared spectroscopy gives the absorption bands at ~815 and 427 cm(-1), which are related to asymmetric stretching and bending vibrations of MoO4(2-) tetrahedron. Particle morphology is studied using scanning and transmission electron microscopy (SEM and TEM), and aggregation of particles is found. X-ray photoelectron spectroscopy (XPS) is utilized to examine the oxidation states of metal ions/oxygen and oxygen ion vacancies in Gd(3+) co-doped CaMoO4:Eu. With an increase in Gd(3+) concentration, peaks corresponding to the Gd(3+) (2p(3/2) and 2p(5/2)) binding energy could be detected.

7.
Integr Biol (Camb) ; 6(1): 53-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24287920

ABSTRACT

Highly water dispersible Eu³âº doped CaMoO4 nanoparticles (core) covered by CaMoO4 (shell) have been prepared using the polyol method. Significant enhancement in luminescence intensity by core@shell formation is observed due to the decrease of non-radiative rate arising from surface/defect of particles. Effect of 266 nm laser excitation (Mo-O charge transfer band) on the asymmetric ratio (A21 = intensity ratio of electric to magnetic dipole transitions) has been studied and compared with a xenon lamp source. Luminescence intensity increases with the increase of power at 532 nm laser excitation. In order to explore materials, which can show dual functionalities such as luminescence as well as magnetic properties (magnetization of ∼14.2 emu g⁻¹), water dispersible Fe3O4-CaMoO4:Eu hybrid magnetic nanoparticles (MN) have been prepared. This shows good heating ability up to ∼42 °C (hyperthermia) and luminescence in the red region (∼612 nm), which is in a biological window (optical imaging). Biocompatibility of the synthesized Fe3O4-CaMoO4:Eu hybrid magnetic nanoparticles has been evaluated in vitro by assessing their cytotoxicity on human liver cancer cells (HepG2 cells) and hTERT cells using the MTT assay and fluorescent microscopy studies.


Subject(s)
Europium/chemistry , Luminescence , Magnetite Nanoparticles/chemistry , Cell Survival/drug effects , Formazans/chemistry , Hep G2 Cells , Humans , Magnetite Nanoparticles/ultrastructure , Mesenchymal Stem Cells , Microscopy, Electron, Transmission , Spectrum Analysis, Raman , Tetrazolium Salts/chemistry , X-Ray Diffraction
8.
Nanomedicine ; 9(8): 1328-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23727099

ABSTRACT

Luminescent functionalized mesoporous SiO2@Eu(OH)3 core-shell microspheres (LFMCSMs) were prepared by coating of europium hydroxide (Eu(OH)3) shell on mesoporous silica (SiO2) nanospheres via a facile one-pot process at low temperature. The FETEM images revealed that a well-defined luminescent europium hydroxide shell was successfully grafted on the surface of mesoporous silica nanospheres. These experimental results showed that the LFMCSM has a typical diameter of ca. 392 nm consisting of the silica core with about 230 nm in diameter and europium hydroxide shell with an average thickness of about 162 nm. LFMCSMs exhibited strong red emission peak upon irradiation with ultraviolet light, which originated from the electric-dipole transition (5)D0 → (7)F2 (614 nm) of Eu(3+) ion. The biocompatibility of the synthesized LFMCSMs was evaluated in vitro by assessing their cytotoxic and genotoxic effect on human hepatoblastoma (HepG2) cells using MTT, TUNEL, fluorescent staining, DNA ladder and Gene expression assays respectively. FROM THE CLINICAL EDITOR: This paper describes the development of a one-pot synthesis of luminescent mesoporous SiO2@Eu(OH)3 core-shell microspheres and evaluates their favorable in vitro cyto-toxicity and geno-toxicity, and their applications in bio-imaging of these particles that emit bright red signal under UV exposure.


Subject(s)
Europium/toxicity , Hydroxides/toxicity , Luminescent Agents/toxicity , Optical Imaging , Silicon Dioxide/toxicity , Europium/analysis , Europium/chemistry , Hep G2 Cells , Humans , Hydroxides/analysis , Hydroxides/chemistry , Luminescent Agents/analysis , Luminescent Agents/chemistry , Microspheres , Mutagenicity Tests , Silicon Dioxide/analysis , Silicon Dioxide/chemistry , Ultraviolet Rays
9.
Dalton Trans ; 42(14): 4885-96, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23370409

ABSTRACT

Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.


Subject(s)
Europium/chemistry , Ferrosoferric Oxide/chemistry , Magnetite Nanoparticles/chemistry , Yttrium/chemistry , Animals , Cell Line , Hyperthermia, Induced , Magnetite Nanoparticles/therapeutic use , Mice , Neoplasms/drug therapy , Particle Size , Quantum Theory
10.
Phys Chem Chem Phys ; 15(10): 3480-9, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23361517

ABSTRACT

Y(2)Ti(2)O(7) (YTO) and Er(3+)/Yb(3+) co-doped Y(2)Ti(2)O(7) (EYYTO) phosphors have been prepared by solid-state reaction method. Structures of YTO and EYYTO phosphors are identified as face centered cubic pyrochlores. Up-conversion emission spectra of EYYTO under 976 nm excitation is studied, which revealed three prominent emission lines at ~524, 548 and 661 nm originating from (2)H(11/2)→(4)I(15/2), (4)S(3/2)→(4)I(15/2) and (4)F(9/2)→(4)I(15/2) electronic transitions of Er(3+) ion, respectively in green and red regions. The power dependence study suggests that these bands arise due to two photon absorption. The monodispersed laser ablated colloidal solution of EYYTO shows strong red and green emissions on excitation with 976 nm laser. The variation of luminescence intensity at different laser excitation powers is observed and thus a color can be tuned. The photoluminescence lifetime of green band at 548 nm ((4)S(3/2) level) has been found to be ~446 µs.

11.
Dalton Trans ; 41(45): 13810-4, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23069791

ABSTRACT

As-prepared samples of YPO(4):2Dy nanoparticles prepared by polyol route show strong blue luminescence because of strong host contribution, whereas 500 and 900 °C annealed samples show cold and warm white luminescence, respectively because of different energy transfer rates from host to Dy(3+). Li(+) co-doping improves luminescence intensity as well as crystallinity significantly. Interestingly, Li(+) ions occupy interstitial sites of lattice. These materials will be potential candidates for white light emitting diodes and near-infrared emitting phosphors.

12.
Dalton Trans ; 41(36): 11032-45, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22859260

ABSTRACT

Tb(3+)-doped CaMoO(4) (Tb(3+) = 1, 3, 5, 7, 10, 15 and 20 atom%) core and core-shell nanoparticles have been prepared by urea hydrolysis in ethylene glycol (EG) as capping agent as well as reaction medium at low temperature ~150 °C. As-prepared samples were annealed at 500 and 900 °C for 4 h to eliminate unwanted hydrocarbons and/or H(2)O present in the sample and to improve crystallinity. The synthesised nanophosphors show tetragonal phase structure. The crystallite size of as-prepared sample is found to be ~18 nm. The luminescence intensity of the (5)D(4) → (7)F(5) transition at 547 nm of Tb(3+) is much higher than that of the (5)D(4) → (7)F(6) transition at 492 nm. 900 °C annealed samples show the highest luminescence intensity. The intensity ratio R (I[(5)D(4) → (7)F(6)]/I[(5)D(4) → (7)F(5)]) lies between 0.3-0.6 for as-prepared, 500 and 900 °C annealed samples. The luminescence decay of (5)D(4) level under 355 nm excitation shows biexponential behaviour indicating availability of Tb(3+) ions on surface and core regions of particle; whereas, contribution of Mo-O charge transfer to lifetime is obtained under 250 nm excitation. The CIE coordinates of as-prepared, 500 and 900 °C annealed 5 atom% Tb(3+)-doped CaMoO(4) samples under 250 nm excitation are (0.28, 0.32), (0.22, 0.28) and (0.25, 0.52), respectively. The dispersed particles in polar medium and its polymer film show green light emission. The luminescence intensity is improved significantly after core-shell formation due to extent of decrease of non-radiative rates arising from surface dangling bonds and capping agent. Quantum yields of as-prepared samples of 1, 5 and 7 atom% Tb(3+)-doped CaMoO(4) samples are found to be 10, 3 and 2, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...