Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 61(7): 3232-3239, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34264660

ABSTRACT

The increased use of transition fuels, such as natural gas, and the resulting increase in methane emissions have resulted in a need for novel methane storage materials. Metal-organic frameworks (MOFs) have shown promise as efficient storage materials. A virtually limitless number of potential MOFs can be hypothesized, which exhibit a wide variety of different structural and chemical characteristics. Because of the numerous possibilities, identification of the best MOF for methane storage can be a potentially challenging problem. In this work, determination of the best such MOF was cast as an inverse function problem. The function, a random forest (RF) model using 12 structural and chemical descriptors, was trained on 10% of a data set consisting of 130 398 hypothetical MOFs (hMOFs) to predict simulated methane uptake. The RF model was tested on the remaining 90% of the data. After validation, a genetic algorithm (GA) was used to evolve in silico the best MOFs for methane adsorption. The RF model was imbedded into the GA as the fitness function to predict the methane uptake of the evolved MOFs (eMOFs). The best 15 eMOFs matched hMOFs found in the top 1% of the database. Nine of the 15 eMOFs were found in the top 0.1%. More impressively, two of the eMOFs matched the top two hypothetical MOFs with the highest methane uptake values out of the entire database of 130 398 MOFs. Further, by leveraging the ensemble nature of the GA, it was possible to characterize the importance of the different material properties for methane adsorption, providing fundamental insight for future material design strategies.


Subject(s)
Metal-Organic Frameworks , Methane , Adsorption , Computer Simulation , Research Design
2.
ACS Appl Mater Interfaces ; 11(38): 34533-34559, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31437393

ABSTRACT

A recent report from the United Nations has warned about the excessive CO2 emissions and the necessity of making efforts to keep the increase in global temperature below 2 °C. Current CO2 capture technologies are inadequate for reaching that goal, and effective mitigation strategies must be pursued. In this work, we summarize trends in materials development for CO2 adsorption with focus on recent studies. We put adsorbent materials into four main groups: (I) carbon-based materials, (II) silica/alumina/zeolites, (III) porous crystalline solids, and (IV) metal oxides. Trends in computational investigations along with experimental findings are covered to find promising candidates in light of practical challenges imposed by process economics.

3.
ACS Comb Sci ; 21(9): 614-621, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31390176

ABSTRACT

There is growing interest in estimating quantum observables while circumventing expensive computational overhead for facile in silico materials screening. Machine learning (ML) methods are implemented to perform such calculations in shorter times. Here, we introduce a multistep method based on machine learning algorithms to estimate total energy on the basis of spatial coordinates and charges for various chemical structures, including organic molecules, inorganic molecules, and ions. This method quickly calculates total energy with 0.76 au in root-mean-square error (RMSE) and 1.5% in mean absolute percent error (MAPE) when tested on a database of optimized and unoptimized structures. Using similar molecular representations, experimental thermochemical properties were estimated, with MAPE as low as 6% and RMSE of 8 cal/mol·K for heat capacity in a 10-fold cross-validation.


Subject(s)
Computer Simulation , Machine Learning , Databases, Chemical , Inorganic Chemicals/chemistry , Ions/chemistry , Models, Chemical , Molecular Structure , Organic Chemicals/chemistry , Quantum Theory , Small Molecule Libraries , Thermodynamics
4.
ACS Comb Sci ; 19(10): 640-645, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28800219

ABSTRACT

Using molecular simulation for adsorbent screening is computationally expensive and thus prohibitive to materials discovery. Machine learning (ML) algorithms trained on fundamental material properties can potentially provide quick and accurate methods for screening purposes. Prior efforts have focused on structural descriptors for use with ML. In this work, the use of chemical descriptors, in addition to structural descriptors, was introduced for adsorption analysis. Evaluation of structural and chemical descriptors coupled with various ML algorithms, including decision tree, Poisson regression, support vector machine and random forest, were carried out to predict methane uptake on hypothetical metal organic frameworks. To highlight their predictive capabilities, ML models were trained on 8% of a data set consisting of 130,398 MOFs and then tested on the remaining 92% to predict methane adsorption capacities. When structural and chemical descriptors were jointly used as ML input, the random forest model with 10-fold cross validation proved to be superior to the other ML approaches, with an R2 of 0.98 and a mean absolute percent error of about 7%. The training and prediction using the random forest algorithm for adsorption capacity estimation of all 130,398 MOFs took approximately 2 h on a single personal computer, several orders of magnitude faster than actual molecular simulations on high-performance computing clusters.


Subject(s)
Computer Simulation , Machine Learning , Metals/chemistry , Organometallic Compounds/chemistry , Adsorption , Algorithms , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...