Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 195(11): 1395, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906309

ABSTRACT

The present study validates the potential of the in vitro H9c2(2-1) cell-based sulforhodamine B (SRB) assay to evaluate the temporal variability of wastewater quality. The impact of effluent disposal on water quality and the efficiency of the wastewater treatment process were also assessed. To correlate standard analytical method results with in vitro results, a total of 16 physicochemical parameters, such as nutrients, pH, chemical oxygen demand, total suspended solids and metals, were determined in both raw and treated wastewater samples. Results revealed that the H9c2(2-1) cell-based SRB assay has an enormous potential to evaluate municipal wastewater quality over time and to discriminate influent and effluent toxic characteristics, as well as for water quality monitoring and surveillance of the efficacy of treatment processes. Finally, the gathered results alerted to the impact of phosphates in a biological system, leading us to recommend the selection of this parameter as a potential environmental health indicator.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Environmental Monitoring , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Biological Oxygen Demand Analysis
2.
Mar Pollut Bull ; 193: 115266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37423080

ABSTRACT

Seaweeds have become an important asset in several sectors, including the food and feed industries, cosmetics, and pharmaceuticals, among others. Whether harvested or reared, interest in algae has been growing worldwide due to the resources they offer, including proteins, vitamins, minerals, carbohydrates, essential fatty acids, and dietary fiber, as well as sources of biologically active compounds. However, given their morphology and physiology, as well as their harvest and cultivation environments, algae are prone to the presence of hazards, including pharmaceuticals taken up from the water. Thus, to ensure human and animal safety as well as environmental health, monitoring is essential. Therefore, this work describes the development and validation of a sensitive screening and confirmatory analytical method based on ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-ToF-MS). This multi-residue method enables the determination of 62 pharmaceuticals distributed between 8 therapeutic classes and was fully validated according to Commission Implementing Regulation (EU) 2021/808.


Subject(s)
Seaweed , Ulva , Animals , Humans , Ulva/chemistry , Seaweed/chemistry , Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
3.
Mar Pollut Bull ; 192: 115093, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37271077

ABSTRACT

Understanding the long-term effects of climatic factors on key species' recruitment is crucial to species management and conservation. Here, we analysed the recruitment variability of key species (Dicentrarchus labrax, Platichthys flesus, Solea solea, Pomatoschistus microps and Pomatoschistus minutus) in an estuary between 2003 and 2019, and related it with the prevailing local and large-scale environmental factors. Using a dynamic factor analysis (DFA), juvenile abundance data were grouped into three common trends linked to different habitat uses and life cycle characteristics, with significant effect of temperature-related variables on fish recruitment: Sea surface temperature and the Atlantic Multidecadal Oscillation. In 2010, a regime shift in the North Atlantic coincided with a shift in the common trends, particularly a decline in P. flesus and S. solea trend. This work highlights the thermophilic character of fish recruitment and the necessity to investigate key biological processes in the context of species-specific responses to climate change.


Subject(s)
Bass , Flatfishes , Perciformes , Animals , Temperature , Fishes/physiology , Ecosystem
4.
Mar Pollut Bull ; 186: 114464, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502771

ABSTRACT

The main goal of the present study is to determine the sources of methylmercury (MeHg) for high fish-consumption populations with the Portuguese population as showcase, as Portugal is the EU country with the highest fish consumption per capita (2019: 59.91 kg year-1). Since limited information is available on the effective levels of mercury after culinary treatments, cooked and raw codfish (Gadus morhua), hake (Merluccius merluccius), octopus (Octopus vulgaris), horse mackerel (Trachurus trachurus) and sardine (Sardina pilchardus) were considered. The mercury concentration ranking Hake > Horse mackerel > Codfish > Octopus > Sardine was observed in all situations (cooked and raw samples) for both MeHg and total mercury (T-Hg). The gathered results reinforce the general assumption that the loss of moisture during cooking increases MeHg and T-Hg concentrations in fish, but the idea that MeHg in fish muscle tissue represents the bulk of T-Hg cannot be generalised, as our study determined a MeHg/T-Hg ratio of 0.43 for grilled sardines.


Subject(s)
Gadiformes , Mercury , Methylmercury Compounds , Perciformes , Animals , Fisheries , Fishes , Seafood/analysis
5.
Animals (Basel) ; 12(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077968

ABSTRACT

Neurotransmitters modulate gonadal maturation in bivalves. However, it remains unclear whether there are differences in the nervous system structure between sexes, maturation, and ganglia. Therefore, a stereological study was conducted on the ganglia of adult peppery furrow shell (Scrobicularia plana). Equal-sized males, females, and undifferentiated (gamete absence) animals were fixed with 10% formalin and processed for light microscopy. They were serially cut into 35 µm paraffin thick sections and stained with hematoxylin-eosin. Sections with cerebral (cerebropleural), pedal, and visceral ganglia were studied. The parameters estimated were the volumes of the ganglia, the total and relative volumes of their cortex (outer layer) and medulla (neuropil), and the total number of cells (neurons, glia, and pigmented) per ganglia and compartment. The volumes and numbers were estimated, respectively, by the Cavalieri principle and by the optical fractionator. Females show a larger glia to neuron numerical ratio. Further, females have a greater ganglionic volume than undifferentiated adults, with males showing intermediate values. These facts indicate that the ganglia size is related somehow to maturation. The cell size forms the basis of the differences because total cellularity is equal among the groups. The three ganglion types differ in total volumes and the volume ratio of the cortex versus the medulla. The greater volumes of the pedal ganglia (vis-a-vis the cerebral ones) and of the visceral ganglia (in relation to all others) imply more voluminous cortexes and medullae, but more neuronal and non-neuronal cells only in the visceral. The new fundamental data can help interpret bivalve neurophysiology.

6.
Article in English | MEDLINE | ID: mdl-35010857

ABSTRACT

It is well-known that climate change significantly impacts ecosystems (at the macro-level) and individual species (at the micro-level). Among the former, estuaries are the most vulnerable and affected ecosystems. However, despite the strong relations between climate change and estuaries, there is a gap in the literature regarding international studies across different regions investigating the impacts of climate change and variability on estuaries in different geographical zones. This paper addresses this need and reviews the impacts of climate change, variability and extreme weather on estuaries. It emphasises the following: (i) a set of climate parameters governing estuarine hydrology and processes; and (ii) a sample of countries in Asia (Bangladesh), Europe (Portugal) and South America (Uruguay). We reviewed the influences of the climatic drivers of the estuarine hydrology, ecological processes and specific species in estuarine communities across the selected geographical regions, along with an analysis of their long-term implications. The key results from the three estuaries are as following: (i) Hilsa fish, of which the catches contribute to 10% of the total earnings of the fishery sector (1% of GDP), are affected by climate-forced hydrological and productivity changes in the Meghna; (ii) extreme droughts and short-term severe precipitation have driven the long-term abundance and spatial distribution of both fish larvae and juveniles/adults in the Mondego; and (iii) the river inflow and fluctuations increases since the early 1970s have contributed to variations in the salinity, the stratification, the oxygen, nutrient and trophic levels and the spatial pattern for the life stages of planktonic species, fish biomass and captures in the Rio de la Plata. The results suggested that immediate action is needed to reduce the vulnerability of estuaries to climate stressors, mainly the changing river flows, storms and sea-level rise. As a contribution to addressing current problems, we described a set of adaptation strategies to foster climate resilience and adaptive capacity (e.g., early-warning systems, dam management to prevent overflows and adaptive fisheries management). The implications of this paper are two-fold. Firstly, it showcases a variety of problems that estuaries face from changing climate conditions. Secondly, the paper outlines the need for suitable adaptive management strategies to safeguard the integrity of such vital ecosystems.


Subject(s)
Climate Change , Ecosystem , Animals , Estuaries , Fisheries , Fishes
7.
Biology (Basel) ; 10(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34943199

ABSTRACT

Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species' population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation-which are significant proxies for benthic function and habitat quality-and subcellular biomarkers-oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.

8.
Mar Pollut Bull ; 173(Pt A): 113015, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628345

ABSTRACT

Atlantic horse mackerel is one of the most commercially important species in Europe. It can reach a longevity of 30 years, with potential implications in lifespan mercury contamination. This study conducted along the Portuguese coast aimed at evaluating the total Hg content and tissue distribution, to determine the annual mercury bioaccumulation patterns and the associated risk for consumption. The T-Hg accumulation patterns observed followed the order: muscle (0.34) > liver (0.28) > heart (0.19) > gills (0.11) > brain (0.041 mg kg-1). Significant differences between tissues reflect the role of the different tissues in storage and redistribution. Significant relationships observed between age and T-Hg for all tissues highlight the continuous nature of the bioaccumulation process. European food safety guidelines signalled significant risk of consumption in about 30% of the samples. Still, there was an overall low risk from the consumption of this species, which can be further minimized through consumer options to avoid health issues.


Subject(s)
Mercury , Perciformes , Water Pollutants, Chemical , Animals , Bioaccumulation , Fishes , Gills/chemistry , Humans , Mercury/analysis , Water Pollutants, Chemical/analysis
9.
Environ Sci Pollut Res Int ; 28(47): 67256-67266, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34247356

ABSTRACT

Contributing to the human health risk assessment, the present study aims to evaluate the ability of paralytic shellfish toxins (PSTs) to cross the human intestinal epithelium by using the Caco-2 permeability assay. A crude extract prepared from the PST producer dinoflagellate Gymnodinium catenatum strain, GCAT1_L2_16, and the PST analogue gonyautoxin-5 (GTX-5) prepared from a certified reference material (CRM) were tested. In the conditions of the assay, none of the compounds altered Caco-2 viability, or the integrity of cell monolayers. The GTX-5 apparent permeability coefficients are 0.9×10-7 and 0.6×10-7 cm s-1 for the crude extract and CRM, respectively, thus, <10-6 cm s-1, which indicates that humans absorb this PST analogue poorly. The present study also reveals that, during a 90-min exposure, GTX-5 is not metabolised to a high extent by Caco-2 or retained in the Caco-2 cytoplasm. Since it is known that GTX-5 can be found in the spleen, liver or kidney of the victims, as well as in the urine samples of patients who consumed contaminated seafood, further research is needed to clarify the transport mechanisms involved, permeation time and dose-dependence, and the possible role of intestinal microflora.


Subject(s)
Dinoflagellida , Toxins, Biological , Caco-2 Cells , Humans , Intestinal Absorption , Shellfish/analysis
10.
Mar Environ Res ; 169: 105404, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34225218

ABSTRACT

The increase in frequency and intensity of extreme climate events over the last few decades has been leading to profound changes in estuarine and marine ecosystems worldwide, with strong implications for the species inhabiting these ecosystems as well as for the services provided by them. In this study, we analysed the effects of climate variability on the temporal and spatial variations in population dynamics of the green crab Carcinus maenas in the Mondego estuary (Portugal), between 2003 and 2018. In this 15-year period, a greater recruitment of C. maenas was observed during drought periods, periods which was matched by an increase in secondary production. Ontogenic stage segregation was also observed, with juveniles being found mainly in the further upriver areas of the estuary. The estuarine population was mainly composed of the green morphotype, with the orange and red morphotypes present in more downstream areas of the estuary. Redundancy analysis (RDA) showed high spatial and temporal variability of C. maenas in the estuary which was related with environmental changes over the 15-year period. A correlation between C. maenas biological features and several local-scale (salinity and river runoff) and large-scale (North Atlantic Oscillation index and Eastern Atlantic pattern) environmental variables was identified through cumulative sums analysis (CUSUM), indicating a strong environmental control on C. maenas population dynamics. This paper shows the importance of relatively long-term datasets to unravel the effects of extreme weather events due to climate change on key epibenthic estuarine species, and also how they might cope with a changing marine environment.


Subject(s)
Brachyura , Animals , Ecosystem , Estuaries , Portugal , Rivers
11.
Mar Pollut Bull ; 166: 112178, 2021 May.
Article in English | MEDLINE | ID: mdl-33721686

ABSTRACT

Indicators of oxidative stress and metabolic capacity are key factors in understanding the fitness of wild populations. In the present study, these factors were evaluated in the pelagic Southern Ocean taxa Antarctic krill (Euphausia superba) and myctophid fish (Electrona antarctica, Gymnoscopelus braueri and G. nicholsi) to establish a baseline record for future studies. Mercury (Hg) concentrations were also analysed to evaluate its potential impacts on species biochemical performance. E. superba had higher metabolic activity than most of the myctophid species, which may explain the comparatively lower energy reserves found in the former. The activity of antioxidant enzymes showed, generally, a lower level in E. superba than in the myctophid species. The lack of any relationship between Hg concentrations and organisms' antioxidant and biotransformation defence mechanisms indicate that levels of Hg accumulated in the studied species were not high enough to affect their biochemical processes adversely.


Subject(s)
Biochemical Phenomena , Euphausiacea , Mercury , Animals , Antarctic Regions , Mercury/analysis , Oceans and Seas , Oxidative Stress
12.
Chemosphere ; 275: 130009, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33652281

ABSTRACT

To overcome restrictions on the use of fish in toxicity testing, the present study proposes to compare the 50% growth inhibition potential (EC50) of four types of effluents on the rat cardiomyoblast H9c2(2-1) cell line by using the sulforhodamine B (SRB) cell mass colorimetric assay, with the corresponding fish lethal test results. Our objective was to evaluate if H9c2(2-1) cells shows comparable sensitivities, in both relative and absolute terms, to those provided by fish. In parallel, this study also compared the results of the chemical characterization with the legislation in force for environmental protection against effluent release into the receiving environment. Moreover, we tested the H9c2(2-1)-based SRB assays with the metals of concern found in the effluent samples. Both fish and cell assays showed the same toxicity rank for effluents: Metal > Oil > Municipal > Paper, and it should be stressed that the complementarity of using chemical and biological data represents a step forward to guarantee both environmental and human safety, since the chemical characterization showed a different toxicity rank: Metal > Municipal > Oil > Paper. Regarding metal elements, the short-term fish results showed a toxicity rank non-comparable with the rank obtained for cells. Nevertheless, the gathered results reveal the potentiality of the in vitro H9c2(2-1) platform as an alternative for fish lethal testing to assess, in absolute terms, the toxicity of effluents, particularly municipal effluents, and metals.


Subject(s)
Water Pollutants, Chemical , Animals , Biological Assay , Fishes , Rats , Rhodamines , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
Environ Pollut ; 275: 116620, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33581632

ABSTRACT

Biomagnification of mercury (Hg) in the Scotia Sea food web of the Southern Ocean was examined using the stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) as proxies for trophic level and feeding habitat, respectively. Total Hg and stable isotopes were measured in samples of particulate organic matter (POM), zooplankton, squid, myctophid fish, notothenioid fish and seabird tissues collected in two years (austral summers 2007/08 and 2016/17). Overall, there was extensive overlap in δ13C values across taxonomic groups suggesting similarities in habitats, with the exception of the seabirds, which showed some differences, possibly due to the type of tissue analysed (feathers instead of muscle). δ15N showed increasing enrichment across groups in the order POM to zooplankton to squid to myctophid fish to notothenioid fish to seabirds. There were significant differences in δ15N and δ13C values among species within taxonomic groups, reflecting inter-specific variation in diet. Hg concentrations increased with trophic level, with the lowest values in POM (0.0005 ± 0.0002 µg g-1 dw) and highest values in seabirds (3.88 ± 2.41 µg g-1 in chicks of brown skuas Stercorarius antarcticus). Hg concentrations tended to be lower in 2016/17 than in 2007/08 for mid-trophic level species (squid and fish), but the opposite was found for top predators (i.e. seabirds), which had higher levels in the 2016/17 samples. This may reflect an interannual shift in the Scotia Sea marine food web, caused by the reduced availability of a key prey species, Antarctic krill Euphausia superba. In 2016/17, seabirds would have been forced to feed on higher trophic-level prey, such as myctophids, that have higher Hg burdens. These results suggest that changes in the food web are likely to affect the pathway of mercury to Southern Ocean top predators.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Antarctic Regions , Bioaccumulation , Environmental Monitoring , Food Chain , Mercury/analysis , Nitrogen Isotopes/analysis , Oceans and Seas , Water Pollutants, Chemical/analysis
14.
Article in English | MEDLINE | ID: mdl-33171298

ABSTRACT

Even though marine dinoflagellates are important primary producers, many toxic species may alter the natural equilibrium of aquatic ecosystems and even generate human intoxication incidents, as they are the major causative agents of harmful algal blooms. In order to deepen the knowledge regarding benthic dinoflagellate adverse effects, the present study aims to clarify the influence of Gambierdiscus excentricus strain UNR-08, Ostreopsis cf. ovata strain UNR-03 and Prorocentrum lima strain UNR-01 crude extracts on rat mitochondrial energetic function and permeability transition pore (mPTP) induction. Our results, expressed in number of dinoflagellate cell toxic compounds tested in a milligram of mitochondrial protein, revealed that 934 cells mg prot-1 of G. excentricus, and 7143 cells mg prot-1 of both O. cf. ovata and P. lima negatively affect mitochondrial function, including by decreasing ATP synthesis-related membrane potential variations. Moreover, considerably much lower concentrations of dinoflagellate extracts (117 cells mg prot-1 of G. excentricus, 1429 cells mg prot-1 of O. cf. ovata and 714 cells mg prot-1 of P. lima) produced mPTP-induced swelling in Ca2+-loaded isolated mitochondria. The present study clearly demonstrates the toxicity of G. excentricus, O. cf. ovata and P. lima extracts at the mitochondrial level, which may lead to mitochondrial failure and consequent cell toxicity, and that G. excentricus always provide much more severe effects than O. cf. ovata and P. lima.


Subject(s)
Dinoflagellida/chemistry , Marine Toxins/toxicity , Mitochondria, Liver/drug effects , Mitochondrial Proteins/metabolism , Animals , Dinoflagellida/classification , Electron Transport Chain Complex Proteins/metabolism , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/metabolism , Mitochondrial Swelling/drug effects , Oxygen Consumption/drug effects , Rats, Wistar , Seawater , Species Specificity
15.
J Environ Sci (China) ; 96: 163-170, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32819690

ABSTRACT

The treatment of wastewaters is crucial to maintain the ecological status of receiving waters, and thereby guarantee the protection of aquatic life and human health. Wastewater quality evaluation is conventionally based on physicochemical parameters, but increasing attention has been paid to integrate physicochemical and biological data. Nevertheless, the regulatory use of fish in biological testing methods has been subject to various ethical and cost concerns, and in vitro cell-based assays have thus become an important topic of interest. Hence, the present study intends: (a) to evaluate the efficiency of two different sample pre-concentration techniques (lyophilisation and solid phase extraction) to assess the toxicity of municipal effluents on rat cardiomyoblast H9c2(2-1) cells, and (b) maximizing the use of the effluent sample collected, to estimate the environmental condition of the receiving environment. The gathered results demonstrate that the H9c2(2-1) sulforhodamine B-based assay is an appropriate in vitro method to assess biological effluent toxicity, and the best results were attained by lyophilising the sample as pre-treatment. Due to its response, the H9c2(2-1) cell line might be a possible alternative in vitro model for fish lethal testing to assess the toxicity of municipal effluents. The physicochemical status of the sample suggests a high potential for eutrophication, and iron exceeded the permissible level for wastewater discharge, possibly due to the addition of ferric chloride for wastewater treatment. In general, the levels of carbamazepine and sulfamethoxazole are higher than those reported for other countries, and both surpassed the aquatic protective values for long-term exposure.


Subject(s)
Water Pollutants, Chemical/analysis , Animals , Biological Assay , Environmental Monitoring , Humans , Myocytes, Cardiac/chemistry , Rats , Rhodamines , Waste Disposal, Fluid
16.
Environ Pollut ; 264: 114711, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32559867

ABSTRACT

Myctophids are the most abundant fish group in the Southern Ocean pelagic ecosystem and are an important link in the Antarctic marine food web. Due to their major ecological role, evaluating the level of mercury (Hg) contamination in myctophids is important as a step towards understanding the trophic pathway of this contaminant. The concentrations of total Hg were determined in muscle, gill, heart and liver tissue of 9 myctophid species to quantify tissue partitioning variability between species. Organic Hg concentration and proportion in muscle was also determined. Hg concentrations were higher in the liver and heart than in muscle and gills, but the proportion of organic Hg was almost 100% in muscle, indicating that the main uptake route for Hg is through the diet. Most of the species analysed have similar vertical and horizontal distributions, and similar feeding modes and prey. Geographical and temporal variability of Hg concentrations was examined using samples from 3 different sampling cruise (2007/08, 2015/16 and 2016/17) and 2 locations (South Georgia and South Orkneys Islands). Our results appear to indicate a decreasing trend in Hg contamination over the last decade, particularly gill tissue, which is in agreement with a previous study on squid from the same region. There was no significant variability in Hg concentration between the different sampling locations. Hg levels were consistent with values reported previously for myctophids around the world, indicating low global-scale geographic variability. A positive relationship between fish size and Hg concentration was found for most species, with the exception of Electrona antarctica females, which may be explained through Hg elimination by egg laying. We estimate that myctophids collectively comprise a Southern Ocean mercury 'reserve' of ≈1.82 metric tonnes.


Subject(s)
Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Antarctic Regions , Ecosystem , Environmental Monitoring , Female , Fishes , Food Chain , Islands , Oceans and Seas
17.
Aquat Toxicol ; 223: 105475, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32325308

ABSTRACT

Ciguatera fish poisoning is a frequently reported non-bacterial food-borne illness related to the consumption of seafood contaminated with ciguatoxins, and possibly maitotoxins. These toxins are synthesized by marine dinoflagellate species of Gambierdiscus and Fukuyoa genera, and their abundance is a matter of great concern due to their adverse effects to aquatic life and human health. The present study aims to assess the sensitivity of rat cardiomyoblast H9c2(2-1) cells to Gambierdiscus toxic compounds using concentration- and time-dependent sulforhodamine B (SRB) colorimetric assays. Low concentrations of Gambierdiscus extracts (corresponding to 1.3-2.3 cells mL-1) induced a concentration-dependent response. Specificity in time-dependent response of H9c2(2-1) cells was demonstrated for G. excentricus after a 180 min exposure compared to both G. cf. belizeanus and G. silvae species, with EC50s obtained after 720 and 360 min, respectively. The sensitivity of H9c2(2-1) cells to dinoflagellate toxic compounds was also tested with other genera from benthic (Coolia malayensis, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and P. lima) and planktonic (Amphidinium carterae and Lingulodinium polyedrum) habitats. Amphidinium, Coolia and Lingulodinium data did not present any concentration-response relationships, and EC50 values could only be obtained after 720 and 1440 min of exposure to both Prorocentrum species and O. cf. ovata, respectively. This study demonstrated that the H9c2(2-1) SRB assay represents a promising and sensitive tool for the detection of Gambierdiscus toxic compounds present in water samples, particularly of G. excentricus at very low cell abundances.


Subject(s)
Ciguatoxins/toxicity , Dinoflagellida/chemistry , Environmental Monitoring/methods , Myoblasts, Cardiac/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biological Assay , Cell Culture Techniques , Cell Line , Ciguatera Poisoning , Ciguatoxins/analysis , Dose-Response Relationship, Drug , Inhibitory Concentration 50 , Plankton/drug effects , Rats , Sensitivity and Specificity , Time Factors , Water Pollutants, Chemical/analysis
18.
Environ Toxicol Pharmacol ; 77: 103379, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32259764

ABSTRACT

Mitochondria was used to clarify the effects of Coolia malayensis strain UNR-02 crude extract by studying mitochondrial membrane potential (ΔΨm) generation and the fluctuations of ΔΨm associated with the induction of mitochondrial permeability transition (MPT). The cytoxicity of C. malayensis was also determined using both HepG2 and H9c2(2-1) cells. C. malayensis extract significantly depressed the oxidative phosphorylation efficiency, as was inferred from the perturbations in ΔΨm and in the phosphorylative cycle induced by ADP. Increased susceptibility to Ca2+-induced MPT was also observed. At the cellular level, the extract significantly decreased cell mass of both cell lines.


Subject(s)
Complex Mixtures/toxicity , Dinoflagellida , Mitochondria, Liver/drug effects , Animals , Cell Line , Cell Survival/drug effects , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/physiology , Rats
19.
Ecotoxicol Environ Saf ; 195: 110465, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32199217

ABSTRACT

Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.


Subject(s)
Dinoflagellida , Marine Toxins/toxicity , Animals , Cell Line , HEK293 Cells , Hep G2 Cells , Humans , Mice , RAW 264.7 Cells , Rats
20.
Environ Sci Pollut Res Int ; 27(7): 7145-7155, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31883075

ABSTRACT

An increasing number and amount of pharmaceuticals for human and veterinary use currently reach the aquatic environment, and the determination of their effects on aquatic organisms becomes of major importance. The 96-h fish lethal test is one of the conventional assays required for environmental hazardous assessment, but it is extremely time-consuming and costly, and it raises ethical concerns. In a broad study, we compared the ability of cell-based assays to detect, in absolute terms, lethal toxicity in fish due to pharmaceuticals in order to select sensitive cell lines to be posteriorly used as an alternative to fish testing. This study also explored the sensitivity of the rat cardiomyoblast H9c2(2-1) cell line and the suitability of the sulforhodamine B colorimetric assay regarding 15 pharmaceuticals belonging to 9 different therapeutic classes. The relation between in vivo and in vitro data was expressed as LC50,96h/EC50 ratios, and 66% of concordant data were attained. Accordingly, it was possible to conclude that cell-based assays could be considered a suitable alternative to fish lethal testing for pharmaceuticals, which, after validation, may dramatically reduce the number of fish required for environmental hazardous assessment. Several cell lines were selected as promising alternatives, but H9c2(2-1), HepG2, PLHC-1, and RTG-2 could be considered suitable starting cell types for further studies, as relevant results were obtained with low exposure times.


Subject(s)
Fishes , Water Pollutants, Chemical , Animals , Biological Assay , Cell Line , Fishes/metabolism , Humans , Lethal Dose 50 , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...