Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 15521, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29138497

ABSTRACT

Methods to rapidly generate high quality bispecific antibodies (BsAb) having normal half-lives are critical for therapeutic programs. Here, we identify 3 mutations (T307P, L309Q, and Q311R or "TLQ") in the Fc region of human IgG1 which disrupt interaction with protein A while enhancing interaction with FcRn. The mutations are shown to incrementally alter the pH at which a mAb elutes from protein A affinity resin. A BsAb comprised of a TLQ mutant and a wild-type IgG1 can be efficiently separated from contaminating parental mAbs by differential protein A elution starting from either a) purified parental mAbs, b) in-supernatant crossed parental mAbs, or c) co-transfected mAbs. We show that the Q311R mutation confers enhanced FcRn interaction in vitro, and Abs harboring either the Q311R or TLQ mutations have serum half-lives as long as wild-type human IgG1. The mutant Abs have normal thermal stability and Fcγ receptor interactions. Together, the results lead to a method for high-throughput generation of BsAbs suitable for in vivo studies.


Subject(s)
Antibodies, Bispecific/genetics , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/genetics , Mutation , Receptors, IgG/chemistry , Staphylococcal Protein A/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Antibodies, Bispecific/biosynthesis , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/isolation & purification , Binding Sites , Chromatography, Affinity , Gene Expression , HEK293 Cells , Half-Life , Humans , Hydrogen-Ion Concentration , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/isolation & purification , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Kinetics , Mice , Models, Molecular , Protein Binding , Protein Engineering/methods , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Secondary , Receptors, IgG/immunology , Receptors, IgG/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Staphylococcal Protein A/immunology , Staphylococcal Protein A/metabolism
2.
MAbs ; 9(8): 1306-1316, 2017.
Article in English | MEDLINE | ID: mdl-28898162

ABSTRACT

The increased number of bispecific antibodies (BsAb) under therapeutic development has resulted in a need for mouse surrogate BsAbs. Here, we describe a one-step method for generating highly pure mouse BsAbs suitable for in vitro and in vivo studies. We identify two mutations in the mouse IgG2a and IgG2b Fc region: one that eliminates protein A binding and one that enhances protein A binding by 8-fold. We show that BsAbs harboring these mutations can be purified from the residual parental monoclonal antibodies in one step using protein A affinity chromatography. The structural basis for the effects of these mutations was analyzed by X-ray crystallography. While the mutation that disrupted protein A binding also inhibited FcRn interaction, a bispecific mutant in which one subunit retained the ability to bind protein A could still interact with FcRn. Pharmacokinetic analysis of the serum half-lives of the mutants showed that the mutant BsAb had a serum half-life comparable to a wild-type Ab. The results describe a rapid method for generating panels of mouse BsAbs that could be used in mouse studies.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Histocompatibility Antigens Class I/immunology , Receptors, Fc/immunology , Staphylococcal Protein A/immunology , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Crystallography, X-Ray , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/immunology , Mutant Proteins/metabolism , Mutation , Protein Binding/immunology , Protein Domains , Receptors, Fc/metabolism , Staphylococcal Protein A/metabolism
3.
MAbs ; 9(1): 114-126, 2017 01.
Article in English | MEDLINE | ID: mdl-27786612

ABSTRACT

Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms , Animals , Antibody-Dependent Cell Cytotoxicity/drug effects , Cell Line, Tumor , Female , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Mice, Nude , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Xenograft Model Antitumor Assays
4.
MAbs ; 8(3): 551-61, 2016.
Article in English | MEDLINE | ID: mdl-26761634

ABSTRACT

Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.


Subject(s)
Antibodies, Bispecific , Antibodies, Neoplasm , ErbB Receptors/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antibodies, Neoplasm/immunology , Antibodies, Neoplasm/pharmacology , Cell Line, Tumor , ErbB Receptors/immunology , Female , Humans , Mice , Mice, Nude , Neoplasms, Experimental/pathology , Receptor Protein-Tyrosine Kinases/immunology , Xenograft Model Antitumor Assays
5.
J Biol Chem ; 290(41): 24689-704, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26260789

ABSTRACT

The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.


Subject(s)
Antibodies, Bispecific/immunology , ErbB Receptors/immunology , ErbB Receptors/metabolism , Gene Expression Regulation , Molecular Targeted Therapy , Proto-Oncogene Proteins c-met/immunology , Proto-Oncogene Proteins c-met/metabolism , Antigens, Surface/chemistry , Antigens, Surface/genetics , Antigens, Surface/immunology , Antigens, Surface/metabolism , Cell Line, Tumor , ErbB Receptors/chemistry , ErbB Receptors/genetics , Humans , Immunoglobulin Fab Fragments/immunology , Models, Molecular , Mutation , Phosphorylation , Protein Multimerization , Protein Structure, Quaternary , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
PLoS One ; 9(3): e92248, 2014.
Article in English | MEDLINE | ID: mdl-24638075

ABSTRACT

Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor microenvironment.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Culture Techniques/methods , Drug Discovery , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Tumor Microenvironment , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Hepatocyte Growth Factor/pharmacology , Humans , Ligands , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Reproducibility of Results , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Treatment Outcome , Tumor Cells, Cultured , Tumor Microenvironment/drug effects
7.
PLoS One ; 7(6): e38101, 2012.
Article in English | MEDLINE | ID: mdl-22701605

ABSTRACT

Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.


Subject(s)
Gene Expression Regulation/genetics , Nerve Regeneration/genetics , Nerve Tissue Proteins/metabolism , Peripheral Nervous System/metabolism , Cerebellum/cytology , Chondroitin Sulfate Proteoglycans , Computational Biology , DNA, Complementary/genetics , Humans , Laminin , Microarray Analysis , Nerve Tissue Proteins/genetics , Neurites/physiology , Neurons/metabolism , Peripheral Nervous System/cytology , Phenotype , Signal Transduction/genetics
8.
Mol Cell Neurosci ; 46(1): 32-44, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20696251

ABSTRACT

Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.


Subject(s)
Neurons/physiology , Peripheral Nervous System/physiology , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cerebellum/cytology , Ganglia, Spinal/cytology , Gene Expression Profiling/methods , Mice , Mice, Inbred C57BL , Microarray Analysis/methods , Neurons/cytology , Nucleic Acid Hybridization/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Transcription Factors/genetics
9.
BMC Bioinformatics ; 9: 186, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18402700

ABSTRACT

BACKGROUND: Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. RESULTS: We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. CONCLUSION: EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.


Subject(s)
Algorithms , Expressed Sequence Tags , Gene Expression Profiling/methods , Gene Library , RNA, Messenger/genetics , Sequence Alignment/methods , Sequence Analysis, RNA/methods , Software , Databases, Genetic , Information Storage and Retrieval/methods
10.
Biotechniques ; 41(5): 619-24, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17140120

ABSTRACT

Manipulating gene expression in primary neurons has been a goal for many scientists for over 20 years. Vertebrate central nervous system neurons are classically difficult to transfect. Most lipid reagents are inefficient and toxic to the cells, and time-consuming methods such as viral infections are often required to obtain better efficiencies. We have developed an efficient method for the transfection of cerebellar granule neurons and hippocampal neurons with standard plasmid vectors. Using 96-well electroporation plates, square-wave pulses can introduce 96 different plasmids into neurons in a single step. The procedure results in greater than 20% transfection efficiencies and requires only simple solutions of nominal cost. In addition to enabling the rapid optimization of experimental protocols with multiple parameters, this procedure enables the use of high content screening methods to characterize neuronal phenotypes.


Subject(s)
Cerebellum/metabolism , Electroporation/methods , Hippocampus/metabolism , Neurons/metabolism , Transfection/methods , Animals , Buffers , Cell Survival , Cells, Cultured , Mice
11.
Ground Water ; 44(4): 511-7, 2006.
Article in English | MEDLINE | ID: mdl-16857028

ABSTRACT

Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.


Subject(s)
Alkalies/chemistry , Biodiversity , Water Microbiology , Water/chemistry , Hydrogen-Ion Concentration , Illinois , Indiana , Michigan , Oxidation-Reduction , Phylogeny , RNA, Bacterial/genetics
13.
Trends Biotechnol ; 23(2): 92-6, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15661346

ABSTRACT

DNA polymerases with 3'-5' proofreading function mediate high fidelity DNA replication but their application for mutation detection was almost completely neglected before 1998. The obstacle facing the use of exo(+) polymerases for mutation detection could be overcome by primer-3'-termini modification, which has been tested using allele-specific primers with 3' labeling, 3' exonuclease-resistance and 3' dehydroxylation modifications. Accordingly, three new types of single nucleotide polymorphism (SNP) assays have been developed to carry out genome-wide genotyping making use of the fidelity advantage of exo(+) polymerases. Such SNP assays might also provide a novel approach for re-sequencing and de novo sequencing. These new mutation detection assays are widely adaptable to a variety of platforms, including real-time PCR, multi-well plate and microarray technologies. Application of exo(+) polymerases to genetic analysis could accelerate the pace of personalized medicine.


Subject(s)
DNA-Directed DNA Polymerase/genetics , DNA Primers , DNA-Directed DNA Polymerase/metabolism , Genotype , Humans , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
14.
BMC Genomics ; 5: 73, 2004 Sep 29.
Article in English | MEDLINE | ID: mdl-15453914

ABSTRACT

BACKGROUND: Microarrays are an important tool with which to examine coordinated gene expression. Soybean (Glycine max) is one of the most economically valuable crop species in the world food supply. In order to accelerate both gene discovery as well as hypothesis-driven research in soybean, global expression resources needed to be developed. The applications of microarray for determining patterns of expression in different tissues or during conditional treatments by dual labeling of the mRNAs are unlimited. In addition, discovery of the molecular basis of traits through examination of naturally occurring variation in hundreds of mutant lines could be enhanced by the construction and use of soybean cDNA microarrays. RESULTS: We report the construction and analysis of a low redundancy 'unigene' set of 27,513 clones that represent a variety of soybean cDNA libraries made from a wide array of source tissue and organ systems, developmental stages, and stress or pathogen-challenged plants. The set was assembled from the 5' sequence data of the cDNA clones using cluster analysis programs. The selected clones were then physically reracked and sequenced at the 3' end. In order to increase gene discovery from immature cotyledon libraries that contain abundant mRNAs representing storage protein gene families, we utilized a high density filter normalization approach to preferentially select more weakly expressed cDNAs. All 27,513 cDNA inserts were amplified by polymerase chain reaction. The amplified products, along with some repetitively spotted control or 'choice' clones, were used to produce three 9,728-element microarrays that have been used to examine tissue specific gene expression and global expression in mutant isolines. CONCLUSIONS: Global expression studies will be greatly aided by the availability of the sequence-validated and low redundancy cDNA sets described in this report. These cDNAs and ESTs represent a wide array of developmental stages and physiological conditions of the soybean plant. We also demonstrate that the quality of the data from the soybean cDNA microarrays is sufficiently reliable to examine isogenic lines that differ with respect to a mutant phenotype and thereby to define a small list of candidate genes potentially encoding or modulated by the mutant phenotype.


Subject(s)
DNA, Complementary/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Glycine max/genetics , Glycine max/physiology , Oligonucleotide Array Sequence Analysis/methods , Cluster Analysis , Cotyledon/genetics , DNA, Plant/genetics , Gene Expression Profiling/statistics & numerical data , Gene Library , Mutation/genetics , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Organ Specificity/genetics , Phenotype
15.
Mol Biotechnol ; 27(1): 75-80, 2004 May.
Article in English | MEDLINE | ID: mdl-15122048

ABSTRACT

Single nucleotide polymorphisms (SNPs) are useful physical markers for genetic studies as well as the cause of some genetic diseases. To develop more reliable SNP assays, we examined the underlying molecular mechanisms by which deoxyribonucleic acid (DNA) polymerases with 3' exonuclease activity maintain the high fidelity of DNA replication. In addition to mismatch removal by proofreading, we have discovered a premature termination of polymerization mediated by a novel OFF-switch mechanism. Two SNP assays were developed, one based on proofreading using 3' end-labeled primer extension and the other based on the newly identified OFF-switch, respectively. These two new assays are well suited for conventional techniques, such as electrophoresis and microplates detection systems as well as the sophisticated microchips. Application of these reliable SNP assays will greatly facilitate genetic and biomedical studies in the postgenome era.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Genetic Techniques , Polymorphism, Single Nucleotide , DNA Primers , DNA-Directed DNA Polymerase/genetics , Polymerase Chain Reaction/methods
16.
Lab Invest ; 83(8): 1147-54, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12920243

ABSTRACT

With the completion of the human genome project, single-nucleotide polymorphisms (SNPs) have become the focus of intense study in biomedical research. Polymerase-mediated primer extension has been employed in a variety of SNP assays. However, these SNP assays using polymerase without proofreading function are compromised by their low reliability. Using a newly developed short amplicon harboring restriction enzyme site, EcoR-I, we were able to compare the single-base discrimination abilities of polymerases with and without proofreading function in primer extension in a broad range of annealing temperatures. Thermodynamic analysis demonstrated a striking single-nucleotide discrimination ability of polymerases with proofreading function. Using unmodified 3'-end allele-specific primers, only template-dependent products were generated by polymerase with proofreading activity. This powerful single-base discrimination ability of exo(+) polymerases was further evaluated in primer extension using three types of 3' terminally modified allele-specific primers. As compared with the poor fidelity in primer extension of polymerases lacking 3' exonuclease activity, this study provides convincing evidence that the use of proofreading polymerases in combination with 3'-end modified allele-specific primers can be a powerful new strategy for the development of SNP assays.


Subject(s)
DNA Mutational Analysis/methods , DNA-Directed DNA Polymerase/metabolism , Polymorphism, Single Nucleotide/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Base Sequence , DNA Primers/chemistry , Molecular Sequence Data , Thermodynamics
17.
Genome Res ; 12(4): 555-66, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11932240

ABSTRACT

To accelerate the molecular analysis of behavior in the honey bee (Apis mellifera), we created expressed sequence tag (EST) and cDNA microarray resources for the bee brain. Over 20,000 cDNA clones were partially sequenced from a normalized (and subsequently subtracted) library generated from adult A. mellifera brains. These sequences were processed to identify 15,311 high-quality ESTs representing 8912 putative transcripts. Putative transcripts were functionally annotated (using the Gene Ontology classification system) based on matching gene sequences in Drosophila melanogaster. The brain ESTs represent a broad range of molecular functions and biological processes, with neurobiological classifications particularly well represented. Roughly half of Drosophila genes currently implicated in synaptic transmission and/or behavior are represented in the Apis EST set. Of Apis sequences with open reading frames of at least 450 bp, 24% are highly diverged with no matches to known protein sequences. Additionally, over 100 Apis transcript sequences conserved with other organisms appear to have been lost from the Drosophila genome. DNA microarrays were fabricated with over 7000 EST cDNA clones putatively representing different transcripts. Using probe derived from single bee brain mRNA, microarrays detected gene expression for 90% of Apis cDNAs two standard deviations greater than exogenous control cDNAs. [The sequence data described in this paper have been submitted to Genbank data library under accession nos. BI502708-BI517278. The sequences are also available at http://titan.biotec.uiuc.edu/bee/honeybee_project.htm.]


Subject(s)
Bees/genetics , Behavior, Animal , DNA, Complementary/genetics , Expressed Sequence Tags , Genetics, Behavioral , Oligonucleotide Array Sequence Analysis/methods , Animals , Brain Chemistry/genetics , Computational Biology/methods , DNA, Complementary/biosynthesis , Drosophila melanogaster/genetics , Gene Expression Profiling/methods , Genes, Insect/genetics , Genes, Insect/physiology , Genetics, Behavioral/methods , Genomics/methods , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...